Skip to main content

Soil Erosion

  • Chapter

Abstract

Soil erosion is a natural process caused by water, wind, and ice that has affected the earth’s surface since the beginning of time. Soil erosion and its off-site, downstream damages are major concerns around the world (La1 1994b) causing losses in soil productivity and degradation of landscape (Walling 1983). Many of man’s activities have accelerated soil erosion (Sombroek 1995; Walling 1983). Oldeman (1994) has estimated that human-induced soil degradation has affected 15% of the world’s arable land surface. Estimates of global soil erosion rates range from 0.088 mm yr-1 (Walling 1987) to 0.30 mm yr-1 (Fournier 1960). These values led to estimates of 17.4 to 58.1 x 109 Mg of soil loss from the land surface (Walling 1990) which is carried downstream into lakes, reservoirs and estuaries where it reduces storage capacity and affects water quality, navigation, and biological productivity. On the land surface, soil erosion decreases organic matter, fine grained soil particles, water holding capacity, and rooting depth leading to loss of soil productivity and quality. The economic consequences from soil erosion on loss of productivity, land degradation, and off-site, downstream damages from eroded soil particles on water quality are a major concern. Pimentel et al. (1995) estimated the economic cost of soil erosion and subsequent sediment deposition to be $400 billion per year worldwide. While this economic estimate of the cost of erosion has been questioned (Sombroek 1995), concerns about soil loss and the estimated cost point to the need for new and improved methodologies and techniques for monitoring and quantifying soil erosion effectively and efficiently across the landscape so that effective land management practices can be applied to the land surface to control and reduce soil erosion

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agassi, M. (ed.): Soil erosion, conservation and rehabilitation, New York, Marcel Dekker, Inc (1995)

    Google Scholar 

  • Biard, F., Baret, F.: Crop residue estimate using multiband reflectance. Remote Sens, Environ. 59, 530–536(1997)

    Google Scholar 

  • Bertuzzi, P., Caussignac, J.M., Stengel, P., Morel, G., Lorendeau, J.Y., Pelloux, G.: An automated, noncontact laser profile meter for measuring soil roughness in situ. Soil Sci. 149,169–178 (1990)

    Article  Google Scholar 

  • Brakensiek, D.L., Osborn, H.B., Rawls, W.J.: Field manual for research in agricultural hydrology. Washington, DC: USDA Agriculture Handbook No. 224 (1979).

    Google Scholar 

  • Cihlar, J.: A methodology for mapping and monitoring soil erosion. Canadian J. Soil Sci. 67,433–444 (1987)

    Article  Google Scholar 

  • Collins, S.H., Moon, G.C.: Stereometric measurement of streambank soil erosion. Photogrammetric Engr. Remote Sens. 45, 183–190 (1979)

    Google Scholar 

  • Corbley, K. Remote sensing skies filling with satellite plans. EOM The Magazine for Geographic, Mapping and Earth Information 5, 26–28 (1996)

    Google Scholar 

  • Daughtry, CST., McMurtrey III, JE., Chappelle, EW., Hunter, WJ., Steiner, JL.: Measuring crop residue cover using remote sensing techniques. Theor. Appl. Climatol. 54, 17–26 (1996)

    Google Scholar 

  • Dubucq, M. : Teledetection spatiale et soil erosion des sols Etude Bibliographique Cah. ORSTOM, Ser. Pedol. Vol. XXII, no 2, 1986, 247–258 (1986)

    Google Scholar 

  • Dymond, J.R., Hicks, D.L.: Steepland soil erosion measured from historical aerial photographs. J. Soil Water Conserv. 41, 252–255 (1986)

    Google Scholar 

  • El-Raey, M., Nasr, S.M., El-Hattab, M.M., Frihy O.E.: Change detection of Rosetta promontory over the last forty years. Internat. J. Remote Sens. 16, 825–834 (1995)

    Article  Google Scholar 

  • FAO: Methodology for soil degradation assessment. Rome, Italy: Food and Agriculture Organization, United Nations (1979)

    Google Scholar 

  • Foster, G.R.: Advances in wind and water soil erosion prediction. J. Soil Water Conserv. 46, 27–29 (1991)

    Google Scholar 

  • Fournier, F.: Climat et soil erosion. Paris: Presses Universitaires de France (1960)

    Google Scholar 

  • Frank, T.D.: Assessing change in surficial character of a semiarid environment with Landsat residual image. Photogrammetric Engr. Remote Sens. 50,471–480 (1984)

    Google Scholar 

  • Fraser, R.H., Warren, M.V. Barten, P.K.: Comparative evaluation of land cover data sources for soil erosion prediction. Water Resour. Bull. 31, 991–1000 (1995)

    Google Scholar 

  • Frazier, B.E., McCool, D.K.: Aerial photography to detect rill soil erosion. Trans. Amer. Soc. Agric. Engr. 24, 1168–1176(1981)

    Google Scholar 

  • Frazier, B.E., McCool, D.K., Engle, C.J.: Soil erosion in the Palouse: an aerial perspective. J. Soil Water Conserv. 38, 70–74 (1983)

    Google Scholar 

  • Gens, R., van Genderen, J.L. SAR interferometry - issues, techniques, applications. Intl. J. Remote Sens. 17, 1803–1835(1996)

    Article  Google Scholar 

  • Greve, CW. (ed.): Digital Photogrammetry: An Addendum to the Manual of Photogrammetiy. Bethesda, MD: American Society of Photogrammetry and Remote Sensing (1996)

    Google Scholar 

  • Hession, W.C., Shanholtz, V.O.: A geographic information system for targeting nonpoint-source agricultural pollution. J. Soil Water Conserv. 43, 264–266 (1988)

    Google Scholar 

  • Huang, C., Bradford, J.M.: Portable laser scanner for measuring soil surface roughness. Soil Sci. Soc. Amer. J. 54,1402–1406 (1990)

    Article  Google Scholar 

  • Hug, C.Urban topography survey with the scanning laser altitude and reflectance sensor (SCALARS). Proc. Second Intl. Airborne Remote Sens. Conf. and Exhibition, pp. 1–429 to 1–438 (1996)

    Google Scholar 

  • Jakubauskas, M.E., Whistler, J.L. Dillworth, M.E., Martinko, E.A.: Classifying remotely sensed data for use in an agricultural nonpoint-source pollution model. J. Soil Water Conserv. 47, 179–183 (1992)

    Google Scholar 

  • Jensen, JR.: Introductory digital image processing: A remote sensing perspective. Englewood Cliffs, NJ: Prentice-Hall, Inc (1996)

    Google Scholar 

  • Johannsen, C.J., Barney, T.W.: Remote applications for resource management J. Soil Water Conserv. 37, 128–131 (1981)

    Google Scholar 

  • Johannsen, CJ., Sanders, JL. (eds.): Remote sensing for resource management, Ankeny, Iowa: Soil Conservation Society of America (1984)

    Google Scholar 

  • Jürgens, M., Fander, M.: Soil erosion assessment and simulation of SGEOS and ancillary digital data. Internat. J. Remote Sens. 14, 2847–2855 (1993)

    Article  Google Scholar 

  • Kirby, R.B.: Measurement of surface roughness in desert terrain by close range photogrammetry. Photogrammetric Record 13, 855–875 (1991)

    Article  Google Scholar 

  • Krabill, W.B., Thomas, R.H., Martin, C.F., Swift, R.N., Frederick, E.B.: Accuracy of airborne laser altimetry over the Greenland ice sheet. Internat. J. Remote Sens. 16, 1211–1222 (1995)

    Article  Google Scholar 

  • Lal, R. (ed.): Soil erosion. Ankeny, IA, Soil and Water Conservation Society (1994a)

    Google Scholar 

  • Lal, R.: Soil erosion by wind and water: Problem and prospects, In: Lai, R. (ed.), Soil erosion, Ankeny, IA: Soil and Water Conservation Society, pp. 1–9 (1994b)

    Google Scholar 

  • Lane, L.J., Renard, K.G., Foster, G.R., Laflen, J.M.: Development and application of modern soil erosion prediction technology - The USDA experience. Australian J. Soil Res. 30, 893–912 (1992)

    Article  Google Scholar 

  • Latz, K., Weismiller, R.A., Van Scoyoc, G.E., Baumgardner, M.F.: Characteristics variations in spectral reflectance of selected eroded afisols. Soil Sci. Soc. Am. J. 48, 1130–1134 (1984)

    Article  CAS  Google Scholar 

  • Leek, R., Solberg, R.: Using remote sensing for monitoring of autumn tillage in Norway. Internat. J. Remote Sens. 16,447–466 (1995)

    Article  Google Scholar 

  • Morgan, K.M., Lee, G.B., Kiefer, R.W., Daniel, T.C., Bubenzer, G.D., Murdock, J.T.: Prediction of soil loss on cropland using remote sensing. J. Soil Water Conserv. 33,291–293 (1978)

    Google Scholar 

  • Morgan, K.M., Nalepa, R.: Application of aerial photographic and computer analysis to the USLE for area wide soil erosion studies. J. Soil Water Conserv. 37, 347–350 (1982)

    Google Scholar 

  • Mutchler, C.K., Murphree, C.E., McGregor, K.C.: Laboratory and field plots for soil erosion research, In: Lai, R. (ed.), Soil erosion. Ankeny, IA: Soil and Water Conservation Society, pp. 11–37 (1994)

    Google Scholar 

  • Oldeman, LR.: The global extent of soil degradation, In: Greenland, DJ. and I. Szaboles (eds.), Soil resilience and sustainable land use, Wallingford, UK: CAB International, pp. 99–118 (1994)

    Google Scholar 

  • Pelletier, R.E.: Evaluating nonpoint pollution using remotely sensed data in soil erosion models. J. Soil Water Conserv. 40, 332–335 (1985)

    Google Scholar 

  • Pelletier, R.E., Griffin II, R.H.: An evaluation of photographic scale in aerial photography for identification of conservation practices. J. Soil Water Conserv. 43, 333–337 (1988)

    Google Scholar 

  • Phillips, K.M., Morgan, K., Newland, L., Koger, D.G.: Thematic mapper data: a new land planning tool. J. Soil Water Conserv. 41, 301–303 (1986)

    Google Scholar 

  • Philipson, W. (ed.): The Manual of Photographic Interpretation. Bethesda, MD: American Society of Photogrammetry and Remote Sensing (1997)

    Google Scholar 

  • Pickup, G., Chewings. VH.: Forecasting patterns of soil erosion in arid lands from Landsat MSS data. Internat. J. Remote Sens. 9, 69–84 (1988)

    Article  Google Scholar 

  • Pimentel, D., Harvey, C., Resosudaimo, P., Sinclair, K, Kurz, D., McNair, M., Crist, S., Shipritz, L., Fitton, L., Saffouri, R., Blair, R.: Environmental and economic cost of soil erosion and conservation benefit. Sci. 267, 1117–1123 (1995)

    Google Scholar 

  • Price, K.P.: Detection of soil erosion within Pinyon-Juniper woodlands using Thematic Mapper(TM) data. Remote Sens. Environ. 45, 233–248 (1993)

    Article  Google Scholar 

  • Ripple, W.: The GIS Applications Book: Examples in Natural Resources: A Compendium. Bethesda, MD: American Society of Photogrammetry and Remote Sensing (1994)

    Google Scholar 

  • Renard, K.G., Foster, G.R., Weesies, G.A., Porter, J.P.: RUSLE Revised Universal Soil Loss Equation. J. Soil Water Conserv. 46, 30–33 (1991)

    Google Scholar 

  • Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C. Predicting soil erosion by water a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Washington, DC, USDA Agriculture Handbook No. 537, (1997).

    Google Scholar 

  • Ritchie, JC.: Remote sensing applications to hydrology: airborne laser altimeters. Hydrological Sci. 1.41,625–636(1996)

    Google Scholar 

  • Ritchie, J.C., Grissinger, E.H., Murphey, J.B., Garbrecht, J.D.: Measuring channel and gully cross-sections with an airborne laser altimeter. Hydrological Processes J. 7, 237–244 (1994)

    Article  Google Scholar 

  • Ritchie, J.C., Jackson, T.J.: Airborne laser measurement of the topography of concentrated flow gullies. Trans. Amer. Soc. Agric. Engr. 32, 645–648 (1989)

    Google Scholar 

  • Ritchie, J.C., McHenry, J.R.: Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. J. Environ. Qual. 19, 215–233 (1990)

    Article  CAS  Google Scholar 

  • Robinove, C.J., Chavez, P.S., Gehring, D., Holmgren, R.: Arid land monitoring using Landsat albedo difference images. Remote Sens. Environ. 11,133–156 (1981)

    Article  Google Scholar 

  • Roehl, JE.: Sediment source areas, delivery ratios and influencing morphological factors. Wallingford, England: International Association of Hydrological Sciences, Pub. No. 59, 202–213 (1962)

    Google Scholar 

  • Samarakoon, L., Ogawa, S., Ebisu, N., Lapitan, R., Kohki, Z.: Inferences of landslide susceptible areas by Landsat Thematic Mapper data. Wallingford, England: International Association of Hydrological Sciences, Pub. No. 217, 83–90 (1993)

    Google Scholar 

  • Seubert, CE., Baumgardner, MF. Weismiller, RA., Kirschner, FR.: Mapping and estimating areal extent of severely eroded soil of selected sites in northern Indiana. 1979 Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, Indiana: Purdue University (1979)

    Google Scholar 

  • Sneddon, J., Lutze, T.A.: Close-range photogrammetic measurement of soil erosion in course-grained soils. Photogrammetric Engr. Remote Sens. 55, 597–600 (1989)

    Google Scholar 

  • Sombroek, W.: Soil degradation and contamination: A global perspective. Soil and Environ. 5, 3–13 (1995)

    CAS  Google Scholar 

  • Spomer, R.G., Mahurin, R.L.: Time-lapse remote sensing for rapid measurement of changing landforms. J. Soil Water Conserv. 39,397–401 (1984)

    Google Scholar 

  • Spomer, R.G., Mahurin, R.L., Piest, R.F.: Soil erosion, deposition and sediment yield from Dry Creek, Basin, Nebraska. Trans. Amer. Soc. Agric. Engr. 29,489–493 (1986)

    Google Scholar 

  • Stephens, P.R., Cihlar, J.: Mapping soil erosion in New Zealand and Canada. In: Johannsen, C.J., Sanders, J.L. (eds) Remote sensing for resource management, Ankeny, Iowa: Soil Conservation Society of America, pp. 232–242 (1982)

    Google Scholar 

  • Stephens, P.R., MacMillian, J.K., Daigle, J.L., Cihlar, J.: Use of sequential aerial photographs to detect and monitor soil management changes affecting cropland soil erosion. J. Soil Water Conserv. 37, 101–105 (1982)

    Google Scholar 

  • Stephens, P.R., MacMillian, J.K., Daigle, J.L., Cihlar, J.: Estimating Universal Soil Loss Equation factor values with aerial photography. J. Soil Water Conserv. 40, 293–296 (1985)

    Google Scholar 

  • Thomas, A.W., Welch, R.: Measurement of ephemeral gully soil erosion. Trans. Amer. Soc. Agric. Engr. 31, 1723–1728(1988)

    Google Scholar 

  • Walling, D.E.: The sediment delivery problem. J. Hydrol. 65, 209–237 (1983)

    Google Scholar 

  • Walling, D.E.: Rainfall, runoff, and soil erosion of the land: a global review, In: Gregory, K.J. (ed.), Energetics of the Physical Environment, Chichester, England: J. Wiley and Sons, Ltd., pp. 89–117 (1987)

    Google Scholar 

  • Walling, D.E.: Sediment yield investigations: A perspective on recent developments and future needs. Proc. Fourth International Symposium on River Sedimentation, Beijing, China (1990)

    Google Scholar 

  • Welch, R., Jordan, T.R.: Analytical non-metric close-range photogrammetry for monitoring stream channel soil erosion. Photogrammetric Engr. Remote Sens. 49, 367–374 (1983)

    Google Scholar 

  • Welch, R., Jordan, TR., Thomas, AW., Ellis, JW.: Photogrammetric techniques for monitoring soil erosion. Department of Geography, University of Georgia, Athens, GA. Research Report No. IRC 093083 (1983)

    Google Scholar 

  • Whiting, M.L., DeGloria, S.D. Benson, A.S., Wall, S. L.: Estimating conservation tillage residue using aerial photography. J. Soil Water Conserv. 42, 130–132 (1987)

    Google Scholar 

  • Wilson, DA., McCourt, ML., Humes, TM.: Multi-temporal land use analyses for soil erosion in selected Prince Edwards Island (P.E.I.) Watersheds. International Geoscience and Remote Sensing Symposium 1989, pp. 1979–1985 (1989)

    Google Scholar 

  • Wischmeier, WH., DD. Smith Predicting rainfall soil erosion losses. Agr. Handbook No. 537, Washington, DC: USDA (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ritchie, J.C. (2000). Soil Erosion. In: Schultz, G.A., Engman, E.T. (eds) Remote Sensing in Hydrology and Water Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59583-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59583-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64036-0

  • Online ISBN: 978-3-642-59583-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics