Skip to main content

Neural Capital and Life span Evolution among Primates and Humans

  • Conference paper
Brain and Longevity

Part of the book series: Research and Perspectives in Longevity ((RPL))

Abstract

This paper presents a theory of brain and life span evolution and applies it to both the primate order, in general, and to the hominid line, in particular. To address the simultaneous effects of natural selection on the brain and on the life span, it extends standard life history theory (LHT) in biology, which organizes research into the evolutionary forces shaping age-schedules of fertility and mortality (Cole 1954; Gadgil and Bossert 1970; Partridge and Harvey 1985). This extension, the embodied capital theory (Kaplan and Robson 2001 b; Kaplan 1997; Kaplan et al. 2000), integrates existing models with an economic analysis of capital investments and the value of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiello L, Wheeler P (1995) The expensive-tissue hypothesis: The brain and the digestive system in human and primate evolution. Curr Anthropol 36: 199–221.

    Article  Google Scholar 

  • Allman J, McLaughlin T, Hakeem A (1993) Brain weight and life-span in primate species. Proc Nat Acad Sci pp. 118–122.

    Google Scholar 

  • Alvard M (1995) Intraspecific prey choice by Amazonian hunters. Curr Anthropol 36: 789–818.

    Article  Google Scholar 

  • Armstrong E (1982) A look at relative brain size in mammals. Neurosci Lett 34: 101–104.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong E, Falk D (eds) (1982) Primate brain evolution. New York: Plenum Press.

    Google Scholar 

  • Austad SN, Fischer KE (1991) Mammalian aging, metabolism, and ecology: evidence from the bats and marsupials. J Gerontol 46: 47–51.

    Article  Google Scholar 

  • Austad SN, Fischer KE (1992) Primate longevity: Its place in the mammalian scheme. Am J Primatol 28: 251–261.

    Article  Google Scholar 

  • Barton RA (1996) Neocortex size and behavioral ecology in primates. Proc Roy Acad (Biol Sci) 263: 173–177.

    Article  CAS  Google Scholar 

  • Barton RA (1999) The evolutionary ecology of the primate brain. In: Lee PC (ed) Comparative primate socioecology. Cambridge: Cambridge University Press, pp. 167–203.

    Chapter  Google Scholar 

  • Barton RA, Dunbar RIM (1997) Evolution of the social brain. In: Whiten A, Byrne RW (eds) Machiavellian Intelligence II. Cambridge: Cambridge University Press, pp. 240–263.

    Chapter  Google Scholar 

  • Benefit BR (2000) Old World monkey origins and diversification: An evolutionary study of diet and dentition. In: Whitehead P, Jolly CJ (eds) Old World monkeys. Cambridge: Cambridge University Press, pp. 133–179.

    Chapter  Google Scholar 

  • Blurton Jones N, Hawkes K, O’Connell J (1989) Modeling and measuring the costs of children in two foraging societies. In: Standen V, Foley RA (eds) Comparative socioecology of humans and other mammals. London: Basil Blackwell, pp. 367–390.

    Google Scholar 

  • Blurton Jones NG, Hawkes K, Draper P (1994) Foraging returns of !Kung adults and children: Why didn’t !Kung children forage? J Anthropol Res 50: 217–248.

    Google Scholar 

  • Blurton Jones NG, Hawkes K, O’Connell J (1997) Why do Hadza children forage? In: Segal NL, Weisfeld GE, Weisfield CC (eds) Uniting psychology and biology: integrative perspectives on human development. New York: Am Psychol Assoc pp. 297–331.

    Google Scholar 

  • Blurton Jones NB, Hawkes K, O’Connell J (2002) The antiquity of post-reproductive life: Are there modern impacts on hunter-gatherer post-reproductive lifespans? Human Biol 14: 184–205.

    Google Scholar 

  • Bock JA (1995) The determinants of variation in children’s activities in a Southern African Community. Ph. D. Dissertation, University of New Mexico, Albuquerque.

    Google Scholar 

  • Boesch C, Boesch H (1999) The chimpanzees of the Tai forest: behavioral ecology and evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Byrne RW (1995 a) The smart gorilla’s recipe book. Nat Hist Oct: 12–15.

    Google Scholar 

  • Byrne RW (1995 b) The thinking ape: the evolutionary origins of intelligence. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Byrne RW (1997 a) Machiavellian intelligence. In: Whiten A, Byrne RW (eds) Machiavellian intelligence II: extensions and evaluations. Cambridge: Cambridge University Press, pp. 1–23.

    Chapter  Google Scholar 

  • Byrne RW (1997 b) The technical intelligence hypothesis: an additional evolutionary stimulus to intelligence? In: Whiten A, Byrne RW (eds): Machiavellian intelligence II: extensions and evaluations. Cambridge: Cambridge University Press, pp. 289–311.

    Chapter  Google Scholar 

  • Byrne RW, Whiten A (eds) (1988) Machiavellian intelligence. Oxford: Clarendon Press.

    Google Scholar 

  • Charnov EL (1993) Life history invariants: some explanations of symmetry in evolutionary ecology. Oxford: Oxford University Press.

    Google Scholar 

  • Clutton-Brock TH, Harvey PH (1980) Primates, brains and ecology. J Zool London 109: 309–323.

    Google Scholar 

  • Cole LC (1954) The population consequences of life history phenomena. Quart Rev Biol 29: 103–137.

    Article  CAS  PubMed  Google Scholar 

  • Costa DL (2000) Understanding the twentieth century decline in chronic conditions among older men. Demography 37: 53–72.

    Article  CAS  PubMed  Google Scholar 

  • Deacon TW (1997) The symbolic species. New York: W. W. Norton & Co.

    Google Scholar 

  • Dunbar RIM (1992) Neocortex size as a constraint on group size in primates. J Human Evol 20: 469–493.

    Article  Google Scholar 

  • Dunbar RIM (1998) The social brain hypothesis. Evol Anthropol 6: 178–190.

    Article  Google Scholar 

  • Economos AC (1980) Brain-life span conjecture: A re-evaluation of the evidence. Gerontology 26: 82–89.

    Article  CAS  PubMed  Google Scholar 

  • Eveleth PB (1986) Timing of menarche: Secular trend and population differences. In: Lancaster JB, Hamburg BA (eds) School-age pregnancy and parenthood. Hawthorne, NT: Aldine de Gruyter, pp. 39–53.

    Google Scholar 

  • Finch CE (2002) Evolution and the plasticity of aging in the reproductive schedules in long-lived animals: The importance of genetic variation in neuroendocrine mechanisms. In: Pfaff D, Arnold A, Etgen A, Fahrback S, Rubin R (eds) Hormones, brain and behavior. San Diego: Academic Press.

    Google Scholar 

  • Finch CE, Sapolsky RM (1999) The evolution of Alzheimer disease, the reproductive schedule and the apoE isoforms. Neurobiol Aging 20: 407–428.

    Article  CAS  PubMed  Google Scholar 

  • Fleagle JG (1999) Primate adaptation and evolution. New York: Academic Press.

    Google Scholar 

  • Fogel RW, Costa DL (1997) A theory of technophysio evolution, with some implications for forecasting population, health care costs and pension costs. Demography 34: 49–66.

    Article  CAS  PubMed  Google Scholar 

  • Foley RA, Lee PC (1991) Ecology and energetics of encephalization in human evolution. Phil Trans Roy Soc London B 334: 63–72.

    Article  Google Scholar 

  • Gadgil M, Bossert WH (1970) Life historical consequences of natural selection. Am Naturalist 104: 1–24.

    Article  Google Scholar 

  • Gibson KR (1986) Cognition, brain size and the extraction of embedded food resources. In: Else JG, Lee PC (eds) Primate ontogeny, cognition, and social behavior. Cambridge: Cambridge University Press, pp. 93–105.

    Google Scholar 

  • Goodall J (1986) The chimpanzees of the Gombe: patterns of behavior. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hakeem A, Sandoval GR, Jones M, Allman J (1996) Brain and life span in primates. In: Abeles RP, Catz M, Salthouse TT (eds) Handbook of the psychology of aging. San Diego: Academic Press, pp. 78–104.

    Google Scholar 

  • Harvey PH, Martin RD, Clutton-Brock TH (1987) Life histories in comparative perspective. In: Smuts BB, Cheney DL, Seyfarth RM, Wrangham RW, Struthsaker TT (eds) Primate societies. Chicago: University of Chicago.

    Google Scholar 

  • Hawkes K, O’Connell JF, Blurton Jones N (1989) Hardworking Hadza grandmothers. In: Standen V, Foley RA (eds) Comparative socioecology of humans and other mammals. London: Basil Blackwell, pp. 341–366.

    Google Scholar 

  • Hawkes K, O’Connell JF, Blurton Jones NG, Alvarez H, CharnovEL (1998) Grandmothering, menopause, and the evolution of human life histories. Proc Nat Acad Sci USA 95: 1336–1339.

    Article  CAS  PubMed  Google Scholar 

  • Hill K, Hurtado AM (1996) Ache life history: the ecology and demography of a foraging people. Hawthorne, NY: Aldine.

    Google Scholar 

  • Hill K, Boesch C, Goodall J, Pusey A, Williams J, Wrangham R (2001) Mortality rates among wild chimpanzees. J Human Evol 39: 1–14

    Google Scholar 

  • Hiraiwa-Hasegawa M (1990) The role of food sharing between mother and infant in the ontogeny of feeding behavior. In: Nishida T (ed) The chimpanzees of the Mahale Mountains: sexual and life history strategies. Tokyo: Tokyo University Press, pp. 267–276.

    Google Scholar 

  • Hofman MA (1983) Energy metabolism, brain size and longevity in mammals. Quart Rev Biol 58: 495–512.

    Article  CAS  PubMed  Google Scholar 

  • Holliday MA (1978) Body composition and energy needs during growth. In: Falker F, Tanner JM (eds) Human growth. New York: Plenum Press, pp. 117–139.

    Chapter  Google Scholar 

  • Jerison H (1973) Evolution of the brain and intelligence. New York: Academic Press.

    Google Scholar 

  • Jerison HJ (1976) Paleoneurology and the evolution of mind. Sci Am 234: 90–101.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan HS(1997) The evolution of the human life course. In: Wachter K, Finch C (eds) Between Zeus and salmon: the biodemography of aging. Washington, D.C.: Natl Acad Sci, pp. 175–211.

    Google Scholar 

  • Kaplan H, Robson A (2001 a) The coevolution of intelligence and life expectancy in hunter-gatherer economies. London, Ontario: Department of Economics, University of Western Ontario.

    Google Scholar 

  • Kaplan H, Robson A (2001 b) The co-evolution of intelligence and lifespan and the emergence of humans. Albuquerque, NM: Department of Anthropology, University of New Mexico.

    Google Scholar 

  • Kaplan H, Robson A. in press. “The evolution of life expectancy and intelligence in hunter-gatherer economies”. American Economic Review.

    Google Scholar 

  • Kaplan HS, A Robson. 2002. “The emergence of humans: The coevolution of intelligence and longevity with intergenerational transfers”. Proceedings of the National Academy of Sciences 99: 10221–10226.

    Article  CAS  Google Scholar 

  • Kaplan H, Hill K, Hurtado AM, Lancaster JB, Robson A. in press. “Embodied capital and the evolutionary economics of the human lifespan”. Population and Development Review, Supplement.

    Google Scholar 

  • Kaplan HS, Hill K, Lancaster JB, Hurtado AM (2000) A theory of human life history evolution: Diet, intelligence, and longevity. Evol Anthropol 9: 156–185.

    Article  Google Scholar 

  • Kaplan HS, Gangestad S, Mueller TC, Lancaster JB (2001) The evolution of primate brains and life histories: A new model and empirical analysis. Albuquerque, NM: University of New Mexico.

    Google Scholar 

  • Kelly RL (1995) The foraging spectrum: Diversity in hunter-gatherer lifeways. Washington, D.C.: Smithsonian Institution Press.

    Google Scholar 

  • Kozlowski J, Wiegert RG (1986) Optimal allocation to growth and reproduction. Theoret Pop 29: 16–37.

    Article  CAS  Google Scholar 

  • Lack D (1954) The natural regulation of animal numbers. Oxford: Oxford University Press.

    Google Scholar 

  • Lancaster JB (1986) Human adolescence and reproduction: An evolutionary perspective. In: Lancaster JB, Hamburg BA (eds) School-age pregnancy and parenthood. Hawthorne, NY: Aldine de Gruyter, pp. 17–39.

    Google Scholar 

  • Leibenberg L (1990) The art of tracking: the origin of science. Cape Town: David Phillip.

    Google Scholar 

  • Lloyd DG (1987) Selection of offspring size at independence and other size-versus-number strategies. Am Naturalist 129: 800–817.

    Article  Google Scholar 

  • Marlowe F (2000) The patriarch hypothesis: An alternative explanation of menopause. Human Nat 11, pp. 27–42.

    Article  Google Scholar 

  • Martin RD (1981) Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293: 57–60.

    Article  CAS  PubMed  Google Scholar 

  • Martin RD (1996) Scaling of the mammalian brain: The maternal energy hypothesis. News Physiol Sci 11: 149–156.

    Google Scholar 

  • Milton K (1981) Distribution patterns of tropical plant foods as an evolutionary stimulus to primate mental development. Am Anthropol 83: 534–548.

    Article  Google Scholar 

  • Milton K (1987) Primate diet and gut morphology: implications for human evolution. In: Harris M, Ross EB (eds) Food and evolution: toward a theory of human food habits. Philadelphia: Temple University Press, pp. 93–116.

    Google Scholar 

  • Milton K (1988) Foraging behaviour and the evolution of primate intelligence. In: Byrne RW, Whiten A (eds) Machiavellian intelligence. Oxford: Clarendon Press, pp. 285–305.

    Google Scholar 

  • Milton K (1993) Diet and primate evolution. Sci Am 269: 70–77.

    Article  Google Scholar 

  • Milton K (1999) A hypothesis to explain the role of meat-eating in human evolution. Evol Anthropol 8:11–21.

    Article  Google Scholar 

  • Milton K, Demment M (1988) Digestive and passage kinetics of chimpanzees fed high and low fiber diets and comparison with human data. J Nutrit 118: 107.

    Google Scholar 

  • Parker ST, McKinney ML (1999) Origins of intelligence: the evolution of cognitive development in monkeys, apes and humans. Baltimore: Johns Hopkins Press.

    Google Scholar 

  • Partridge L, Harvey P (1985) Costs of reproduction. Nature 316: 20–21.

    Article  Google Scholar 

  • Promislow DEL (1991) Senescence in natural populations of mammals: A comparative study. Evolution 45: 1869–1887.

    Article  Google Scholar 

  • Rose MR, Mueller LD (1998) Evolution of the human lifespan: past, future and present. Am J Human Biol 10: 409–420.

    Article  Google Scholar 

  • Ross C (1992) Basal metabolic rate, body weight and diet in primates: An evaluation of the evidence. Folia Primatol 58: 7–23.

    Article  CAS  PubMed  Google Scholar 

  • Sacher GA (1975) Maturation and longevity in relation to cranial capacity in hominid evolution. In: Tuttle R (ed) Primate functional morphology and evolution. The Hague: Mouton, pp. 417–441.

    Google Scholar 

  • Shanley DP, Kirkwood TBL (2000) Calorie restriction and aging: a life-history analysis. Evolution 54: 740–750.

    CAS  PubMed  Google Scholar 

  • Silk JB (1978) Patterns of food-sharing among mother and infant chimpanzees at Gombe National Park, Tanzania. Folia Primatol 29: 129–141.

    Article  CAS  PubMed  Google Scholar 

  • Smith BH (1991) Dental development and the evolution of life history in Hominidae. Am J Physical Anthropol 86: 157–174.

    Article  Google Scholar 

  • Smith BH (1993) The physiological age of KNM-WT 15 000. In: Walker A, Leakey R (eds) The Nario-kotome Homo erectus skeleton. Cambridge: Harvard University Press, pp. 196–220.

    Google Scholar 

  • Smith CC, Fretwell SD (1974) The optimal balance between size and number of offspring. Am Naturalist 108: 499–506.

    Article  Google Scholar 

  • Stanford CB (1998) Chimpanzee and Red Colobus: the ecology of predator and prey. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • StinerM (1991) An interspecific perspective on the emergence of the modern human predatory niche. In: Stiner M (ed) Human predators and prey mortality. Boulder: Westview Press, pp. 149–185.

    Google Scholar 

  • Teleki G (1973) The predatory behavior of wild chimpanzees. Lewisburg, PA: Bucknell University Press.

    Google Scholar 

  • Worthman CM (1999) Evolutionary perspectives on the onset of puberty. In: Trevathan WR, Smith EO, McKenna JJ (eds) Evolutionary medicine. Oxford: Oxford University Press, pp. 135–163.

    Google Scholar 

  • Wrangham RW (1979) On the evolution of ape social systems. Soc Sci Info 18: 335–368.

    Google Scholar 

  • Wrangham RW, Smuts B (1980) Sex differences in behavioral ecology of chimpanzees in Gombe National Park, Tanzania. J Reprod Fertil (Suppl) 28: 13–31.

    Google Scholar 

  • Wrangham W(1975) The behavioral ecology of chimpanzees in Gombe National Park, Tanzania. Ph.D. dissertation, Cambridge University, Cambridge

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaplan, H.S., Mueller, T., Gangestad, S., Lancaster, J.B. (2003). Neural Capital and Life span Evolution among Primates and Humans. In: Finch, C.E., Robine, JM., Christen, Y. (eds) Brain and Longevity. Research and Perspectives in Longevity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59356-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59356-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63948-7

  • Online ISBN: 978-3-642-59356-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics