Skip to main content

Minimal Residual Disease in Breast Cancer and Gynecological Malignancies: Phenotype and Clinical Relevance

  • Conference paper
Molecular Staging of Cancer

Abstract

In breast cancer, about 35% of patients without any clinical signs of overt distant metastases already have disseminated tumor cells in bone marrow aspirates at the time of primary therapy. A significant prognostic impact of these disseminated tumor cells has been shown by many international studies: patients with tumor cells in their bone marrow have a significantly worse prognosis than those without them. Even in malignancies where the skeletal system is not a preferred location for distant metastasis, such as ovarian cancer, early presence of minimal residual disease (MRD) is correlated with poor patient outcome. Thus, besides analysis of the primary tumor, detection of MRD can be used for assessment of patient prognosis and for prediction or monitoring of response to systemic therapy. Disseminated tumor cells are also the targets for novel tumor biological therapy approaches such as specific antibody-based therapies against target cell-surface antigens such as HER2, EpCAM (17–1A), and uPA-R. In breast cancer, a first antibody-based tumor therapy against HER2 (Herceptin) has already been approved for clinical use in recurrent disease. However, patient selection for such tumor biological therapies becomes rather difficult due to phenotype changes, which may manifest themselves as differences between primary lesion and disseminated tumor cells. Therefore, not only identification of disseminated tumor cells but even more so their characterization at the protein and gene levels have become increasingly important. In conclusion, characterization of tumor biological properties of disseminated tumor cells allows identification of patients with breast cancer or gynecological malignancies at risk for relapse who are likely to benefit from systemic treatment and/or novel tumor biological therapy approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allgayer H, Heiss MM, Riesenberg R, Babic R, Jauch KW, Schildberg FW (1997) Immunocytochemical phenotyping of disseminated tumor cells in bone marrow by uPA receptor and CK18: investigation of sensitivity and specificity of an immunogold/alkaline phos-phatase double staining protocol. J Histochem Cytochem 45:203–212

    Article  PubMed  CAS  Google Scholar 

  • Borgen E, Naume B, Nesland JM, Kvalheim G, Beiske K, Fodstad O, Diel I, Solomayer EF, Theocharous P, Coombes RC, Smith BM, Wunder E, Marolleau JP, Garcia J, Pantel K (1999) Standardization of the immunocytochemical detection of cancer cells in BM and blood: I. establishment of objective criteria for the evaluation of immunostained cells. Cytotherapy 1:377–388

    Article  PubMed  CAS  Google Scholar 

  • Braun S, Pantel K (1998) Prognostic significance of micrometastatic bone marrow involve-ment. Breast Cancer Res Treat 52:201–216

    Article  PubMed  CAS  Google Scholar 

  • Braun S, Hepp F, Kentenich CR, Janni W, Pantel K, Riethmuller G, Willgeroth F, Sommer HL (1999a) Monoclonal antibody therapy with edrecolomab in breast cancer patients: monitoring of elimination of disseminated cytokeratin-positive tumor cells in bone marrow. Clin Cancer Res 5:3999–4004

    PubMed  CAS  Google Scholar 

  • Braun S, Hepp F, Sommer HL, Pantel K (1999b) Tumor-antigen heterogeneity of disseminated breast cancer cells: implications for immunotherapy of minimal residual disease. Int J Cancer 84:1–5

    Article  PubMed  CAS  Google Scholar 

  • Braun S, Kentenich C, Janni W, Hepp F, de Waal J, Willgeroth F, Sommer H, Pantel K (2000a) Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J Clin Oncol 18:80–86

    PubMed  CAS  Google Scholar 

  • Braun S, Pantel K, Muller P, Janni W, Hepp F, Kentenich CR, Gastroph S, Wischnik A, Dimpfl T, Kindermann G, Riethmuller G, Schlimok G (2000b) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342:525–533

    Article  PubMed  CAS  Google Scholar 

  • Braun S, Cevatli BS, Assemi C, Janni W, Kentenich CR, Schindlbeck C, Rjosk D, Hepp F (2001a) Comparative analysis of micrometastasis to the bone marrow and lymph nodes of node-negative breast cancer patients receiving no adjuvant therapy. J Clin Oncol 19:1468–1475

    PubMed  CAS  Google Scholar 

  • Braun S, Schindlbeck C, Hepp F, Janni W, Kentenich C, Riethmüller G, Pantel K (2001b) Oc-cult tumor cells in bone marrow of patients with locoregionally restricted ovarian cancer predict early distant metastatic relapse. J Clin Oncol 19:368–375

    PubMed  CAS  Google Scholar 

  • Braun S, Schlimok G, Heumos I, Schaller G, Riethdorf L, Riethmüller G, Pantel K (2001c) ErbB2 overexpression on occult metastatic cells in bone marrow predicts poor clinical outcome of stage I-III breast cancer patients. Cancer Res 61:1890–1895

    PubMed  CAS  Google Scholar 

  • Braun S, Nusser N, Harbeck N, Pantel K (2002) Occult metastatic cancer cells in the bone marrow: a clinical marker for tumor staging and decision making in primary breast cancer. Clin Cancer Res (in press)

    Google Scholar 

  • Brugger W, Bühring HJ, Grünebach F, Vogel W, Kaul S, Müller R, Brümmendorf TH, Ziegler BL, Rappold I, Brossart P, Scheding S, Kanz L (1999) Expression of MUC-1 epitopes on normal bone marrow: implications for the detection. J Clin Oncol 17: 1535–1544

    PubMed  CAS  Google Scholar 

  • Cain JM, Ellis GK, Collins C, Greer BE, Tamimi HK, Figge DC, Gown AM, Livingston RB (1990) Bone marrow involvement in epithelial ovarian cancer by immunocytochemical assessment. Gynecol Oncol 38:442–445

    Article  PubMed  CAS  Google Scholar 

  • Coombes RC, Dearnaley DP, Redding WH, Ormerod MG, Skilton RA, Sloane JP, Imrie S, Edwards AW, Monaghan P, Neville AM (1983) Micrometastases in breast cancer. In: Peeters H (ed) Protides of the biological fluids. Pergamon, Oxford, pp 317–323

    Google Scholar 

  • Cote RJ, Rosen PP, Lesser ML, Old LJ, Osborne MP (1991) Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J Clin Oncol 9:1749–1756

    PubMed  CAS  Google Scholar 

  • Czegledy J, Iosif C, Hansson BG, Evander M, Gergely L, Wadell G (1995) Can a test for E6/E7 transcripts of human papillomavirus type 16 serve as a diagnostic tool for the detection of micrometastasis in cervical cancer? Int J Cancer 64:211–215

    Article  PubMed  CAS  Google Scholar 

  • Dearnaley DP, Sloane JP, Ormerod MG, Steele K, Coombes RC, Clink HM, Powles TJ, Ford HT, Gazet JC, Neville AM (1981) Increased detection of mammary carcinoma cells in marrow smears using antisera to epithelial membrane antigen. Br J Cancer 44:85–90

    Article  PubMed  CAS  Google Scholar 

  • Diel IJ, Kaufmann M, Costa SD, Holle R, von Minckwitz G, Solomayer EF, Kaul S, Bastert G (1996) Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J Natl Cancer Inst 88:1652–1658

    Article  PubMed  CAS  Google Scholar 

  • Diel IJ, Kaufmann M, Goerner R, Costa SD, Kaul S, Bastert G (1992) Detection of tumor cells in bone marrow of patients with primary breast cancer: a prognostic factor for distant metastasis. J Clin Oncol 10:1534–1539

    PubMed  CAS  Google Scholar 

  • Diel IJ, Solomayer EF, Costa SD, Gollan C, Goerner R, Wallwiener D, Kaufmann M, Bastert G (1998) Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Engl J Med 339:357–363

    Article  PubMed  CAS  Google Scholar 

  • Fishman A, Klein A, Zemer R, Zimlichman S, Bernheim J, Cohen I, Altaras MM (2000) Detection of micrometastasis by cytokeratin-20 (reverse transcription polymerase chain reaction) in lymph nodes of patients with endometrial cancer. Gynecol Oncol 77:399–404

    Article  PubMed  CAS  Google Scholar 

  • Funke I, Schraut W, Jauch KW, Untch M, Schildberg FW (2001) Prospective study on minimal residual disease in breast cancer. Proceedings of 1st International Congress on Molecular staging of cancer. Munich, p 25

    Google Scholar 

  • Gabriel M, Obrebowska A, Spaczynski M (2000) Nachweis von Epithelzellen im Knochenmark von Patientinnen mit Ovarialkarzinomen unter Anwendung von immunhistochemischen Methoden. Gynakol Geburtshilfliche Rundsch 40:140–144

    Article  PubMed  CAS  Google Scholar 

  • Gebauer G, Fehm T, Merkle E, Beck EP, Lang N, Jager W (2001) Epithelial cells in bone marrow of breast cancer patients at time of primary surgery: clinical outcome during longterm follow-up. J Clin Oncol 19:3669–3674

    PubMed  CAS  Google Scholar 

  • Gerber B, Krause A, Muller H, Richter D, Reimer T, Makovitzky J, Herrnring C, Jeschke U, Kundt G, Friese K (2001) Simultaneous immunohistochemical detection of tumor cells in lymph nodes and bone marrow aspirates in breast cancer and its correlation with other prognostic factors. J Clin Oncol 19:960–971

    PubMed  CAS  Google Scholar 

  • Harbeck N, Untch M, Pache L, Eiermann W (1994) Tumour cell detection in the bone marrow of breast cancer patients at primary therapy: results of a 3-year median follow-up. Br J Cancer 69:566–571

    Article  PubMed  CAS  Google Scholar 

  • Hayes DF, Bast RC, Desch CE, Fritsche HJr, Kemeny NE, Jessup JM, Locker GY, Macdonald JS, Mennel RG, Norton L, Ravdin P, Taube S, Winn RJ (1996) Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. J Natl Cancer Inst 88:1456–1466

    Article  PubMed  CAS  Google Scholar 

  • Heiss MM, Allgayer H, Gruetzner KU, Funke I, Babic R, Jauch KW, Schildberg FW (1995) In-dividual development and uPA-receptor expression of disseminated tumour cells in bone marrow: a reference to early systemic disease in solid cancer. Nat Med 1:1035–1039

    Article  PubMed  CAS  Google Scholar 

  • Hempel D, Müller P, Oruzio D, Ehnle S, Schlimok G (1997) Adoptive immunotherapy with the monoclonal antibody (moab) 17/1A to reduce minimal residual disease in breast cancer patients after high dose chemotherapy (HDC) (abstract). Blood 90[Suppl 1]:379b

    Google Scholar 

  • Hepp F, Kentenich C, Janni W, Kindermann G, Braun S (2000) Prognostische Bedeutung Cytokeratin (CK)-positiver Knochenmark-Mikrometastasen (KMM) bei Patientinnen mit Zervixkarzinom (CC) im Stadium FIGO I-II. Geburtsh Frauenheilk 60: S37

    Google Scholar 

  • Heyderman E, Strudley I, Powell G, Richardson TC, Cordell JL, Mason DY (1985) A new monoclonal antibody to epithelial membrane antigen (EMA)-E29. A comparison of its immunocytochemical reactivity with polyclonal anti-EMA antibodies and with another monoclonal antibody, HMFG-2. Br J Cancer 52:355–361

    Article  PubMed  CAS  Google Scholar 

  • Hohaus S, Funk L, Brehm M, Abdallah A, Murea S, Kaul S, Haas R (1996) Persistence of isolated tumor cells in patients with breast cancer after sequential high-dose therapy with peripheral blood stem cell transplantation (PBSC) (abstract). Blood 88[Suppl 10]:128a

    Google Scholar 

  • Horn LC, Fischer U, Hockel M (2001) Occult tumor cells in surgical specimens from cases of early cervical cancer treated by liposuction-assisted nerve-sparing radical hysterectomy. Int J Gynecol Cancer 11:159–163

    Article  PubMed  CAS  Google Scholar 

  • Janni W, Hepp F, Rjosk D, Kentenich C, Strobl B, Schindlbeck C, Hantschmann P, Sommer H, Pantel K, Braun S (2001) The fate and prognostic value of occult metastatic cells in the bone marrow of patients with breast carcinoma between primary treatment and recurrence. Cancer 92:46–53

    Article  PubMed  CAS  Google Scholar 

  • Klein A, Fishman A, Zemer R, Zimlichman S, Altaras MM (2000) Detection of tumor circulat-ing cells by cytokeratin 20 in the blood of patients with endometrial carcinoma. Gynecol Oncol 78:352–355

    Article  PubMed  CAS  Google Scholar 

  • Kowolik JH, Kuhn W, Nahrig J, Werner M, Obst T, Avril N, Schmitt M, Graeff H (2000) Detection of micrometastases in sentinel lymph nodes of the breast applying monoclonal anti-bodies AE1/AE3 to pancytokeratins. Oncol Rep 7:745–749

    PubMed  CAS  Google Scholar 

  • Kriiger WH, Kroger N, Togel F, Renges H, Badbaran A, Hornung R, Jung R, Gutensohn K, Gieseking F, Janicke F, Zander AR (2001) Disseminated breast cancer cells prior to and after high-dose therapy. J Hematother Stem Cell Res 10:681–689

    Article  Google Scholar 

  • Landys K, Persson S, Kovarik J, Hultborn R, Holmberg E (1998) Prognostic value of bone marrow biopsy in operable breast cancer patients at the time of initial diagnosis: results of a 20-year median follow-up. Breast Cancer Res Treat 49:27–33

    Article  PubMed  CAS  Google Scholar 

  • Mansi JL, Berger U, McDonnell T, Pople A, Rayter Z, Gazet JC, Coombes RC (1989) The fate of bone marrow micrometastases in patients with primary breast cancer. J Clin Oncol 7:445–449

    PubMed  CAS  Google Scholar 

  • Mansi JL, Gogas H, Bliss JM, Gazet JC, Berger U, Coombes RC (1999) Outcome of primaryreast-cancer patients with micrometastases: a long-term follow-up study. Lancet 354:197–202

    Article  PubMed  CAS  Google Scholar 

  • Marth C, Hoifodt H, Walberg L, Kaern J, Andresen M, Hovland B, Mathiesen O, Trope C (1999) Carcinoma cells in bone marrow and peripheral blood of ovarian cancer patients (abstract). 2nd International Symposium on Minimal Residual Cancer, Berlin, Germany

    Google Scholar 

  • McGuire W (1991) Breast cancer prognostic factors: Evaluation guidelines. J Natl Cancer Inst 83:154–155

    Article  PubMed  CAS  Google Scholar 

  • McGuire WL, Clark GM (1992) Prognostic factors and treatment decisions in axillary-node-negative breast cancer. N Engl J Med 326:1756–1761

    Article  PubMed  CAS  Google Scholar 

  • Molino A, Colombatti M, Bonetti F, Zardini M, Pasini F, Perini A, Pelosi G, Tridente G, Veneri D, Cetto GL (1991) A comparative analysis of three different techniques for the detection of breast cancer cells in bone marrow Cancer 67:1033–1036

    Article  PubMed  CAS  Google Scholar 

  • Molino A, Pelosi G, Micciolo R, Turazza M, Nortilli R, Pavanel F, Cetto GL (1999) Bone marrow micrometastases in breast cancer patients. Breast Cancer Res Treat 58:123–130

    Article  PubMed  CAS  Google Scholar 

  • Noack F, Schmitt M, Bauer J, Helmecke D, Kruger W, Thorban S, Sandherr M, Kuhn W, Graeff H, Harbeck N (2000) A new approach to phenotyping disseminated tumor cells: methodological advances and clinical implications. Int J Biol Markers 15:100–104

    PubMed  CAS  Google Scholar 

  • Osborne MP, Wong GY, Asina S, Old LJ, Cote RJ, Rosen PP (1991) Sensitivity of immunocytochemical detection of breast cancer cells in human bone marrow. Cancer Res 51:2706–2709

    PubMed  CAS  Google Scholar 

  • Otte M, Deppert K, Ebel S, Hosch S, Janicke F, Izbicki JR, Pantel K (2000) Immunomagnetic enrichment of disseminated tumor cells from bone marrow of carcinoma patients (abstract 2475). Proc AACR687

    Google Scholar 

  • Pantel K, Felber E, Schlimok G (1994) Detection and characterization of residual disease in breast cancer. J Hematother 3:315–322

    Article  PubMed  CAS  Google Scholar 

  • Pantel K, Schlimok G, Braun S, Kutter D, Lindemann F, Schaller G, Funke I, Izbicki JR, Riethmüller G (1993) Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst 85:1419–1424

    Article  PubMed  CAS  Google Scholar 

  • Pantel K, Schlimok G, Kutter D, Schaller G, Genz T, Wiebecke B, Backmann R, Funke I, Riethmuller G (1991) Frequent down-regulation of major histocompatibility class I antigen expression on individual micrometastatic carcinoma cells. Cancer Res 51:4712–4715

    PubMed  CAS  Google Scholar 

  • Rappold I, Brossart P, Scheding S, Kanz L (1999) Expression of MUC-1 epitopes on normal bone marrow: implications for the detection of occult bone marrow micrometastases. J Clin Oncol 17:1535–1544

    PubMed  Google Scholar 

  • Redding WH, Coombes RC, Monaghan P, Clink HM, Imrie SF, Dearnaley DP, Ormerod MG, Sloane JP, Gazet JC, Powles TJ (1983) Detection of micrometastases in patients with primary breast cancer. Lancet 2:1271–1274

    Article  PubMed  CAS  Google Scholar 

  • Ridell B, Landys K (1979) Incidence and histopathology of metastases of mammary carcinoma in biopsies from the posterior iliac crest. Cancer 44:1782–1788

    Article  PubMed  CAS  Google Scholar 

  • Riethmüller G, Holz E, Schlimok G, Schmiegel W, Raab R, Höffken K, Gruber R, Funke I, Pichlmaier H, Hirche H, Buggisch P, Witte J, Pichlmayr R (1998) Monoclonal antibody therapy for resected Dukes’ C colorectal cancer: seven-year outcome of a multicenter randomized trial. J Clin Oncol 16:1788–1794

    PubMed  Google Scholar 

  • Roggel F, Späthe K, Sinz S, Braun S, Hocke S, Rutke S, Bosl M, Schmalfeldt B, Sandherr M, Werner M, Kuhn W, Schmitt M, Harbeck N (2001) Characterization of disseminated tumor cells in bone marrow of patients with ovarian carcinoma (abstract 62). 3rd International Symposium on Minimal Residual Cancer, Hamburg, Germany

    Google Scholar 

  • Ross AA, Miller GW, Moss TJ, Kahn DG, Warner NE, Sweet DL, Louie KG, Schneidermann E, Pecora AL, Meagher RC (1995) Immunocytochemical detection of tumor cells in bone marrow and peripheral blood stem cell collections from patients with ovarian cancer. Bone Marrow Transplant 15:929–933

    Article  PubMed  CAS  Google Scholar 

  • Ross JS, Fletcher JA (1998) The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Oncologist 3:237–252

    PubMed  Google Scholar 

  • Salvadori B, Squicciarini P, Rovini D, Orefice S, Andreola S, Rilke F, Barletta L, Menard S, Colnaghi MI (1990) Use of monoclonal antibody MBrl to detect micrometastases in bone marrow specimens of breast cancer patients. Eur J Cancer 26:865–867

    Article  PubMed  CAS  Google Scholar 

  • Schlimok G, Funke I, Holzmann B, Gottlinger G, Schmidt G, Hauser H, Swierkot S, Warnecke HH, Schneider B, Koprowski H (1987) Micrometastatic cancer cells in bone marrow: in vitro detection with anti-cytokeratin and in vivo labeling with anti-17-lA monoclonal antibodies. Proc Natl Acad Sci USA 84:8672–8676

    Article  PubMed  CAS  Google Scholar 

  • Schlimok G, Riethmuller G (1990) Detection, characterization and tumorigenicity of disseminated tumor cells in human bone marrow. Semin Cancer Biol 1:207–215

    PubMed  CAS  Google Scholar 

  • Sinz S, Rutke S, Späthe K, Hocke S, Roggel F, Sandherr M, Werner M, Braun S, Kuhn W, Schmitt M, Harbeck N (2001) Phenotyping of disseminated tumor cells in bone marrow aspirates of breast cancer patients (abstract 63). 3rd International Symposium on Minimal Residual Cancer, Hamburg, Germany

    Google Scholar 

  • Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  PubMed  CAS  Google Scholar 

  • Tögel F, Datta C, Badbaran A, Kröger N, Renges H, Gieseking F, Jänicke F, Zander AR, Krüger W (2001) Urokinase-like plasminogen activator receptor expression on disseminated breast cancer cells. J Hematother Stem Cell Res 10:141–145

    Article  PubMed  Google Scholar 

  • Wilex AG MG (2001) Wilex starts phase I trial with anti-metastatic urokinase inhibitor drug. Press release 21–09-2001 http://www.wilex.de

  • Wong SL, Chao C, Edwards MJ, Simpson D, McMasters KM (2001) The use of cytokeratin staining in sentinel lymph node biopsy for breast cancer. Am J Surg 182:330–334

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roggel, F. et al. (2003). Minimal Residual Disease in Breast Cancer and Gynecological Malignancies: Phenotype and Clinical Relevance. In: Allgayer, H., Heiss, M.M., Schildberg, F.W. (eds) Molecular Staging of Cancer. Recent Results in Cancer Research, vol 162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59349-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59349-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63945-6

  • Online ISBN: 978-3-642-59349-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics