Skip to main content

Experimental Studies of the Structures and Isomerization of Atomic Clusters

  • Chapter
Theory of Atomic and Molecular Clusters

Part of the book series: Springer Series in Cluster Physics ((CLUSTER))

Abstract

Ion mobility measurements can be used to separate structural isomers of atomic clusters and to provide information about their geometries and isomerization processes. The principles behind ion mobility measurements and the methods used to calculate mobilities for comparison with the experimental data are briefly reviewed. With the development of high resolution ion mobility measurements, it is now possible to separate many more structural isomers than could be resolved using conventional techniques. Some recent results for carbon and silicon clusters are described. For sodium chloride nanocrystals several families of structural isomers have been resolved and the results show that dramatic shape transformations can occur at room temperature for these species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. R. Rowe, D. W. Fahey, F. C. Fehsenfeld, and D. L. Albritton, J. Chem. Phys. 73, 194 (1980).

    Article  ADS  Google Scholar 

  2. D. F. Hagen, Analyt Chem. 51, 870 (1979).

    Article  Google Scholar 

  3. G. von Helden, M.-T. Hsu, P. R. Kemper, and M. T. Bowers, J. Chem. Phys. 93, 3835 (1991).

    Article  Google Scholar 

  4. G. von Helden, M.-T. Hsu, N. Gotts, and M. T. Bowers, J. Phys. Chem. 97, 8182 (1993).

    Article  Google Scholar 

  5. K. B. Shelimov, J. M. Hunter, and M. F. Jarrold, Int. J. Mass Spectrom. Ion Proc. 138, 17(1994).

    Article  Google Scholar 

  6. J. M. Hunter and M. F. Jarrold, J. Am. Chem. Soc. 117, 103 (1995).

    Google Scholar 

  7. M.F. Jarrold and V.A. Constant, Phys. Rev. Lett. 67, 2994(1992).

    Google Scholar 

  8. J. M. Hunter, J. L. Fye, M. F. Jarrold, and J. E. Bower, Phys. Rev. Lett. 73, 2063 (1994).

    Article  ADS  Google Scholar 

  9. M. F. Jarrold and J. E. Bower, J. Chem. Phys. 98, 2399 (1993).

    Article  ADS  Google Scholar 

  10. D. E. Clemmer, J. M. Hunter, K. B. Shelimov, and M. F. Jarrold, Nature 372, 248 (1994).

    Article  ADS  Google Scholar 

  11. M. F. Jarrold and E. C. Honea, J. Am. Chem. Soc. 114, 459 (1992).

    Article  Google Scholar 

  12. J. M. Hunter, J. L. Fye, and M. F. Jarrold, Science 260, 784 (1993).

    Article  ADS  Google Scholar 

  13. G. von Helden, N. G. Gotts, and M. T. Bowers, Nature 363, 60 (1993).

    Article  ADS  Google Scholar 

  14. E. A. Mason and E. W. McDaniel, Transport Properties of Ions in Gases (Wiley; New York, 1988).

    Google Scholar 

  15. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley; New York, 1954).

    Google Scholar 

  16. E. Mack, J. Amer. Chem. Soc. 47, 2468 (1925).

    Article  Google Scholar 

  17. S. N. Lin, G. W. Griffin, E. C. Horning, and W. E. Wentworth, J. Chem. Phys. 60, 4994 (1974).

    Article  ADS  Google Scholar 

  18. G. von Helden, N. G. Gotts, P. Maitre, and M. T. Bowers, Chem. Phys. Lett. 227, 601 (1994).

    Article  ADS  Google Scholar 

  19. S. Lee, T. Wyttenbach, and M. T. Bowers, J. Am. Chem. Soc. 117, 10159 (1995).

    Article  Google Scholar 

  20. L. D. Book, C. Xu, and G. E. Scuseria, Chem. Phys. Lett. 222, 281 (1994).

    Article  ADS  Google Scholar 

  21. A. A. Shvartsburg and M. F. Jarrold, Chem. Phys. Lett. 261, 86 (1996).

    Article  ADS  Google Scholar 

  22. G. von Helden, T. Wyttenbach, and M. T. Bowers, Int. J. Mass Spectrom. Ion Proc. 146/147, 349(1995).

    Article  ADS  Google Scholar 

  23. M. F. Mesleh, J. M. Hunter, A, A. Shvartsburg, G. C. Schatz, and M. F. Jarrold, J. Phys. Chem. 100, 16082 (1996).

    Article  Google Scholar 

  24. J. P. Doye and D. J. Wales, Chem. Phys. Lett. 262, 167 (1996).

    Article  ADS  Google Scholar 

  25. A. A. Shvartsburg, R, R. Hudgins, Ph. Dugourd, and M. F. Jarrold, J. Phys. Chem. A 101, 1684 (1997).

    Article  Google Scholar 

  26. D. L. Strout, R. L. Murry, C. Xu, W. C. Eckhoff, G. K. Odom, and G. E. Scuseria, Chem. Phys. Lett. 214, 576 (1993).

    Article  ADS  Google Scholar 

  27. G. E. Scuseria, Chem. Phys. Lett. 257, 583 (1996); and references therein.

    Article  ADS  Google Scholar 

  28. M. F. Mesleh, G. C. Schatz, and M. F. Jarrold, (unpublished).

    Google Scholar 

  29. H. E. Revercomb and E. A. Mason, Analyt. Chem., 47, 970 (1975).

    Article  Google Scholar 

  30. Y. Kaneko, M. R. Megill, and J. B. Hasted, J. Chem. Phys., 45, 3741 (1966).

    Article  ADS  Google Scholar 

  31. Ph. Dugourd, R. R. Hudgins, D. E. Gemmer, and M. F. Jarrold, Rev. Sci. Instrum. 68, 1122(1997).

    Article  Google Scholar 

  32. G. von Helden, P. R. Kemper, N. Gotts, and M. T. Bowers, Science, 259, 1300 (1993); N. G. Gotts, G. von Helden, and M. T. Bowers, Int. J. Mass Spectrom. IonProc. 149/150, 217 (1995).

    Article  ADS  Google Scholar 

  33. D. L. Strout, L. D. Book, J. M. Millam, C. Xu, and G. E. Scuseria, J. Chem. Phys. 98, 8622(1994).

    Google Scholar 

  34. M. F. Jarrold and J. E, Bower, J.Chem. Phys. 96, 9180 (1992).

    Article  ADS  Google Scholar 

  35. K. D. Rinnen and M. L. Mandich, Phys. Rev. Lett. 69, 1823 (1992).

    Article  ADS  Google Scholar 

  36. G. Gantefor, (private communication).

    Google Scholar 

  37. J. E. Campana, T. M. Barlak, R. J. Colton, J. J. Decorpo, J. R. Wyatt, and B. I. Dunlap, Phys. Rev. Lett. 47, 1046 (1981).

    Article  ADS  Google Scholar 

  38. R. Pflaum, P. Pfau, K. Sattler, and E. Recknagel, Surf. Sci. 156, 165 (1985); R. Pflaum, K.Sattler, and E. Recknagel, Chem. Phys. Lett. 138, 8 (1987)}.

    Article  ADS  Google Scholar 

  39. E.C. Honea, M.L. Homer, P. Labastie, and R.L. Whetten, Phys. Rev. Lett. 63, 394 (1989).

    Article  ADS  Google Scholar 

  40. Y. J. Twu, C. W. S. Conover, Y. A. Yang and L. A. Bloomfield, Phys. Rev. B 42, 5306 (1990).

    ADS  Google Scholar 

  41. P. Labastie, J.M. L’Hermite, Ph. Poncharal, and M. Sence, J. Chem. Phys. 103, 6362 (1995).

    Article  ADS  Google Scholar 

  42. R.L. Whetten, Acc. Chem. Res. 26, 49 (1993).

    Article  Google Scholar 

  43. J. Luo, U. Landman, and J. Jortner, in Physics and Chemistry of Small Clusters, P. Jena, B. K. Rao, and S. N. Kanna, Eds. (Plenum, New York, 1987) p201.

    Google Scholar 

  44. D. O. Welch, O. W. Lazereth, G. J. Dienes, and R. D. Hatcher, J. Chem. Phys. 68, 2159 (1978).

    Article  ADS  Google Scholar 

  45. Ph. Dugourd, R. R. Hudgins, and M. F. Jarrold, Chem. Phys. Lett. 267, 186 (1997).

    Article  ADS  Google Scholar 

  46. J. Diefenbach and T. P. Martin, J. Chem. Phys. 83, 4585 (1985).

    Article  ADS  Google Scholar 

  47. N. G. Phillips, C. W. S. Conover, and L. A. Bloomfield, J. Chem. Phys. 94, 4980 (1991).

    Article  ADS  Google Scholar 

  48. D. O. Welch, O, W. Lazareth, G. J. Dienes, and R. D. Hatcher, J. Chem. Phys. 64, 835 (1975).

    Article  ADS  Google Scholar 

  49. M. F. Jarrold, J. Phys. Chem. 99, 11 (1995).

    Article  Google Scholar 

  50. J.M. Hunter, J.L. Fye, E.J. Roskamp, and M.F. Jarrold, J. Phys. Chem. 98, 1810 (1994).

    Article  Google Scholar 

  51. T.P. Martin, J. Chem. Phys. 72, 3506 (1980).

    Article  ADS  Google Scholar 

  52. A. Heidenreich, J. Jortner, and I. Oref, J. Chem. Phys. 97, 197 (1992).

    Article  ADS  Google Scholar 

  53. U. Landman, D. Scharf, and J. Jortner, Phys. Rev. Lett. 54, 1860 (1985).

    Article  ADS  Google Scholar 

  54. D. Scharf, J. Jortner, and U. Landman, J. Chem. Phys. 87, 2716 (1987).

    Article  ADS  Google Scholar 

  55. J.P. Rose and R.S. Berry, J. Chem. Phys. 96, 517 (1992).

    Article  ADS  Google Scholar 

  56. V.K.W. Cheng, J.P. Rose, and R.S. Berry, Z. Phys. D 26, 195 (1993).

    Article  ADS  Google Scholar 

  57. H.W. Etzel and R.J. Maurer, J. Chem. Phys. 18, 1003 (1950).

    Article  ADS  Google Scholar 

  58. V. K. W. Cheng, B. A. W. Coller, and E. R. Smith, J. Chem. Soc. Faraday Trans. I 84, 899(1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dugourd, P., Hudgins, R.R., Shvartsburg, A.A., Jarrold, M.F. (1999). Experimental Studies of the Structures and Isomerization of Atomic Clusters. In: Jellinek, J. (eds) Theory of Atomic and Molecular Clusters. Springer Series in Cluster Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58389-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58389-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63570-0

  • Online ISBN: 978-3-642-58389-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics