Skip to main content

Biodiversity and Ecosystem Function in Agricultural Systems

  • Chapter
Biodiversity and Ecosystem Function

Abstract

In this chapter we are concerned with the significance of biodiversity in the functioning of a particular type of ecosystem. In the broadest sense all the concepts and principles covered in the other chapters of this book are relevant to this discussion. Our main purpose is thus to establish a context for considering the role and significance of biodiversity in the functioning of agricultural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amador MF, Gliessman SR (1990) An ecological approach to reducing external inputs through the use of intercropping In: Gliessman SR (ed) Agroecology: researching the ecological basis for sustainable agriculture. Springer, berg, Berlin Heidelhey New York, pp 160–168

    Google Scholar 

  • Anderson JM (1978) Inter-and intra-habitat relationships between woodland cryptostigmata species diversity and the diversity of soil and litter microhabitats. Oecologia 32: 341–348

    Article  Google Scholar 

  • Anderson JM (1987) The role of soil fauna in agricultural systems. In: Wilson JR (ed) Advances in nitrogen cycling in agricultural systems. CAB International, Wallingford, pp 89–112

    Google Scholar 

  • Anderson JM (1988a) Spatiotemporal effects of invertebrates on soil processes. Biol Fertil Soils 6: 216–227

    Article  CAS  Google Scholar 

  • Anderson JM (1988b) Invertebrate-mediated transport processes in soil. Agric Ecosystt Environ 24: 5–19

    Article  Google Scholar 

  • Anderson JM, Spencer T (1991) Carbon, nutrient and water balances of tropical rainforest ecosystems subject to disturbance. MAB Digest 7, Unesco, Paris

    Google Scholar 

  • Beets WC (1982) Multiple cropping and tropical farming systems. Westview, Boulder, CO

    Google Scholar 

  • Christensen M (1989) A view of fungal ecology. Mycologia 81: 1–19

    Article  Google Scholar 

  • Clarholm M (1984) Heterotrophic, free-living protozoa: neglected microorganisms with an important task in regulating bacterial populations. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. American Society for Microbiology, Washington, pp 321–326

    Google Scholar 

  • Clements RO (1978) The benefit and some long term effects of controlling in a perennial rye grass field. Scientific Proceedings, Royal Dublin Society Series A 6: 335–341

    Google Scholar 

  • Conway GR (1985) Agricultural ecology and farming systems research. In: Remenyi JV (ed) Agricultural systems research for developing countries ACIAR, Canberra, pp 43–59

    Google Scholar 

  • Cooke RC, Rayner ADM (1984) Ecology of saprotrophic fungi. Longman, London

    Google Scholar 

  • Dangerfield JM (1990) Abundance, biomass and diversity of soil macrofauna in savanna woodland and associated managed habitants. Pedobiologia 34: 141–150

    Google Scholar 

  • Elliott ET, Hunt HW, Walter DE (1988) Detrital food-web interactions in North American grassland ecosystems. Agric Ecosyst Environ 24: 41–56

    Article  Google Scholar 

  • Elliott PW, Knight D, Anderson JM (1990) Denitrification in earthworm casts and soil from pastures under different fertiliser and drainage regimes. Soil Biol Biochem 22: 601–605

    Article  CAS  Google Scholar 

  • Elliott PW, Knight D, Anderson JM (1991) Variables controlling denitrification from earthworm casts and soil in permanent pastures. Biol Fertil Soils 11: 24–29

    Article  CAS  Google Scholar 

  • Ewel JJ, Mazzarini MJ, Berish CW (1991) Tropical soil fertility changes under monocultures and successional communities of different structure. Ecol Applic 1: 289–302

    Article  Google Scholar 

  • Francis CA (1986) Multiple cropping systems. MacMillan, New York

    Google Scholar 

  • Frankland JC (1981) Mechanisms in fungal successions. In: Wicklow DT, Carrol GC (eds) The fungal community: its organisation and role in the ecosystem. Marcel Dekker, New York, pp 403–426

    Google Scholar 

  • Frissel MJ (ed) (1978) Cycling of mineral nutrients in agricultural ecosystems. Elsevier, Amsterdam

    Google Scholar 

  • Frost PGH (1985) Organic matter and nutrient dynamics in a broadleafed African savanna. In: Tothill JC, Molt JJ (eds) Ecology and management of the worlds’s savannas. Australian Academy of Science, Canberra, pp 200–206

    Google Scholar 

  • Frost P, Menaut J-C, Walker BH, Medina E, Solbrig OT, Swift MJ (1986) Responses of savannas to stress and disturbance: a proposal for a collaborative programme of research. Biology International, Special Issue 10, IUBS, Paris

    Google Scholar 

  • Grigg DB (1974) The agricultural systems of the world: an evolutionary approach. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111: 1169–1194

    Article  Google Scholar 

  • Heal OW, Dighton J (1985) Resource quality and trophic structure in the soil system; In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. (Special Publication No. 4), British Ecological Society, Blackwell, Oxford

    Google Scholar 

  • Hendrix PF, Parmilee RW, Crossley DA, Coleman DC, Odum EP, Groffman PM (1986) Detritus food webs in conventional and no-tillage agroecosystems. Bio Science 36: 374–380

    Google Scholar 

  • Hunt HW, Coleman DC, Ingham ER, Ingham RE, Elliott RE, Moore JC, Rose SL, Reid CP, Morleg CR (1987) The detrital food was in a short grass prairie. Biol Faitil Soils 3: 57–68

    Google Scholar 

  • Ingham RE, Trofymow JA, Ingham EA, Coleman DC (1985) Interactions of bacteria, fungi and their nematode grazers: effects on nutrient cycling and plant growth. Ecol Monogr 55: 119–140

    Article  Google Scholar 

  • Izac AMN, Swift MJ (1992) Common property resources in West African agriculture: sustainability and improved technologies. Proceedings Second Annual Conference, International Association for the Study of Common Property, Winnipeg (in press)

    Google Scholar 

  • Jenkinson DS, Powlson DS (1976) The effects of biocidal treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biol Biochem 8: 209–213

    Article  CAS  Google Scholar 

  • Kang BT, Reynolds L, Atta-Krah AN (1990) Alley farming. Adv Agron 43: 315–359

    Article  Google Scholar 

  • Lal R (1988) Effects of macrofauna on soil properties in tropical ecosystems. Agric Ecosyst Environ 24: 104–116

    Article  Google Scholar 

  • Lavelle P (1983) The structure of earthworm communities. In: Satchell JE (ed) Earthworm ecology: from Darwin to vermiculture. Chapman & Hall, London, pp 449–466

    Google Scholar 

  • Lavelle P, Pashanasi B (1989) Soil macrofauna and land management in Peruvian Amazonia (Yurimaguas, Loreto). Pedobiologia 33: 283–291

    Google Scholar 

  • Moreno RA, Hart RD (1979) Intercropping with cassava in Central America. In: Weber E, Nestel B, Campbell M (eds) Intercropping with cassava. IDRC, Ottawa

    Google Scholar 

  • Nedwell DB, Gray TRG (1987) Soils and sediments as matrices for microbial growth. In: Fletcher M, Gray TRG, Jones JG (eds) Ecology of microbial communities. Cambridge University Press, Cambridge, pp 21–54

    Google Scholar 

  • Odum HT (1970) Summary: an emerging view of the ecological systems at El Verde. In: Odum HT, Pigeon RF (eds) A tropical rain forest. National Technical Information Services, Springfield, pp 191–289

    Google Scholar 

  • Okigbo BN, Greenland DJ (1976) Intercropping systems in tropical Africa. In: Papendick RI, Sanchez PA, Triplett GB (eds) Multiple cropping. American Society of Agronomy, Madison, pp 63–102

    Google Scholar 

  • Palm CA, Sanchez PA (1991) Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolic contents. Soil Biol Biochem 23: 83–88

    Article  CAS  Google Scholar 

  • Papendick RI, Sanchez PA, Triplett GB (1976) Multiple cropping. American Society of Agronomy, Madison

    Google Scholar 

  • Petersen H, Luxton M (1982) A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39: 287–388

    Google Scholar 

  • Potter CS, Meyer RE (1990) The role of soil biodiversity in sustainable dryland farming systems. Adv Soil Sci 13: 241–251

    Article  Google Scholar 

  • Rao MR, Willey RW (1980) Evaluation of yield stability in intercropping: studies with sorghum/pigeon pea. Exp Agric 16: 105–116

    Article  Google Scholar 

  • Ruthenberg H (1980) Farming systems in the tropics, 3rd edn. Clarenden, Oxford

    Google Scholar 

  • Ryden JC (1986) Gaseous losses of nitrogen from grassland. In: van der Meer HG, Ryden JC, Ennick GC (eds) Nitrogen fluxes in intensive grassland systems. Martinus Nijhoff, Dordrecht, pp 59–73

    Chapter  Google Scholar 

  • Soemarwoto O, Soemarwoto I (1982) Homegarden: its natures, origin and future development. In: Awamg K, Gee LG, Gee LF, Derus R, Hbod GH (eds) Ecological basis for rational resource utilisation in the humid tropics of SE Asia. Unesco, Paris, pp 130–139

    Google Scholar 

  • Spencer DSC, Swift MJ (1992) Sustainable agriculture: definition and measurement. In: Mulongoy K (ed) Biological nitrogen fixation and sustainability of tropical agriculture. John Wiley, Chichester (in press)

    Google Scholar 

  • Steiner KG (1982) Intercropping in tropical smallholder agriculture with special reference to West Africa. GTZ, Eschborn

    Google Scholar 

  • Stinner BR, Crossley DA, Odum EP, Todd RL (1984) Nutrient budgets and internal cycling of N, P, K, Ca and Mg in conventional tillage, no-tillage and old-field ecosystems on the Georgia Piedmont. Ecology 65: 354–369

    Article  CAS  Google Scholar 

  • Swift MJ (1976) Species diversity and the structure of Microbial communities. In: Anderson JM, MacFadyen A (eds) The role of aquatic and terrestrial organisms in decomposition processes. Blackwell Scientific Publ, Oxford, pp 185–222

    Google Scholar 

  • Swift MJ (1982) The basidiomycete role in forest ecosystems. In: Frankland JC, Hedger JN, Swift MJ (eds) Decomposer Basidiomycetes: their biology and ecology. Cambridge University Press, Cambridge, pp 307–338

    Google Scholar 

  • Swift MJ (1984) Microbial diversity and decomposer niches. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. American Society for Microbiology, Washington DC, pp 8–16

    Google Scholar 

  • Swift MJ (1987) Organisation of assemblages of decomposer fungi in space and time. In: Giller P, Gee J (eds) Organisation of communities: part and present. British Ecological Society Symposium 27. Blackwell, Oxford, pp 229–253

    Google Scholar 

  • Swift MJ, Woomer PL (1992) Organic matter and the sustainability of agricultural systems: definitions and measurements In: Merckx R, Mulongoy K (eds) Dynamics of organic matter in relation to the sustainability of agricultural systems. John Wiley, Chichester (in press)

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, Oxford

    Google Scholar 

  • Swift MJ, Frost PGH, Campbell BM, Hatton JC, Wilson K (1989) Nitrogen cycling in farming systems derived from savanna: perspectives and challenges. In: Clarholm M, Bergstrom L (eds) Ecology of arable land. Kluver, Dordrecht, pp 63–76

    Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  • Tilman D (1988) Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton

    Google Scholar 

  • Trenbath BR (1974) Biomass productivity of mixtures. Adv Agron 26: 177–210

    Article  Google Scholar 

  • Trenbath BR (1976) Plant interactions in mixed crop communities. In: Papendick RI, Sanchez PA, Triplett GB (eds) Multiple cropping. American Society of Agronomy, Madison, pp 129–170

    Google Scholar 

  • Vandermeer JH (1988) The ecology of intercropping. Cambridge University Press, Cambridge

    Google Scholar 

  • Vandermeer JH (1990) Intercropping. In Carroll CR, Vandermeer JH, Rosset PM (eds) Agroecology. McGraw-Hill, New York, pp 481–516

    Google Scholar 

  • Vandermeer JH, Schultz B (1990) Variability, stability and risk in intercropping: some theoretical considerations. In: Gliessman SR (ed) Agroecology: researching the ecological basis for sustainable agriculture. Springer, Berlin Heidelberg, New York, pp 205–232

    Google Scholar 

  • Verhoef HA, Brussard L (1990) Decomposition and nitrogen mineralisation in natural and agroecosystems: the contribution of soil animals. Biogeochemistry 11: 175–211

    Article  Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling and nutrient limitation in tropical forests. Ecology 65: 285–298

    Article  CAS  Google Scholar 

  • Waddington SR, Palmer AFE, Edje OT (eds) (1990) Research methods for cereal — legume intercropping. CIMMYT, Mexico

    Google Scholar 

  • Warcup JH (1959) Studies on Basidiomycetes in soil. Trans Br Mycol Soc 42: 45–52

    Article  Google Scholar 

  • Whitehead DC (1986) Sources and transformations of organic nitrogen in intensively managed grassland soils In: van der Meer HG, Ryden JC, Ennick GC (eds) Nitrogen fluxes in intensive grassland systems. Martinus Nijhoff, Dordrecht, pp 47–58

    Chapter  Google Scholar 

  • Wood TG, Johnson RA, Ohiagu CE (1977) Populations of termites (Isoptera) in natural and agricultural systems in southern Guineas avanna near Mokwa, Nigeria. Geo Ecol Trop 1: 139–148

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Swift, M.J., Anderson, J.M. (1994). Biodiversity and Ecosystem Function in Agricultural Systems. In: Schulze, ED., Mooney, H.A. (eds) Biodiversity and Ecosystem Function. Praktische Zahnmedizin Odonto-Stomatologie Pratique Practical Dental Medicine, vol 99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58001-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58001-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58103-1

  • Online ISBN: 978-3-642-58001-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics