Skip to main content

Reactive Oxygen Species and Apoptosis

  • Chapter
Apoptosis and Its Modulation by Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 142))

Abstract

There is increasing evidence for the involvement of reactive oxygen species (ROS) in the regulation of central biological functions. Interaction between certain ROS and the generation of highly reactive ROS at desired locations, as well as their modulation by antioxidants and a variety of enzymes, warrant a hitherto unexpected degree of efficiency and specificity. ROS are involved in triggering and mediating apoptosis under physiological and pathophysiological conditions. This paper summarizes the major interdependencies of ROS and their physiological sources, and critically reviews the data on the evidence for the role of ROS during induction and execution of apoptosis. The focus is on the action of Superoxide anions, hydrogen peroxide, hydroxyl radicals, hypochlorous acid, nitric oxide and peroxynitrite. Glutathione represents one of the key elements during the regulation of apoptosis. It balances against ROS created by multiple signaling pathways, enzymatic reactions or mitochondria, and it inhibits sphingomyelinase, the key enzyme for the generation of ceramide. This second messenger is intrinsically interwoven with the generation of ROS and with activation of execution-caspases. Mitochondria are both the target and the source of ROS during induction and execution of apoptosis. The control of the mitochondrial permeability transition pore is therefore of central importance for the regulation of apoptosis. Tumor necrosis factor induces apoptosis through a versatile use of ROS. Similarly, ROS are involved in Apo/Fas-triggered or p53-mediated apoptosis at several distinct and synergistically acting steps. Direct apoptosis induction by TGF-beta depends on the action of ROS. Intercellular and intracellular ROS signaling is the basis for intercellular induction of apoptosis, a recently discovered system for the control of oncogenesis. It is based on specific apoptosis induction in transformed cells by their nontransformed neighbors. Superoxide anions released from transformed cells are the key for specific apoptosis induction. During intercellular signaling, a myeloperoxidase-analogous enzyme converts hydrogen peroxide (generated through dismutation of superoxide anions) into hypochlorous acid. This compound reacts with Superoxide anions at the membrane of the transformed cells to form the ultimate apoptosis-inducing hydroxyl radical. The limited diffusion pathway of Superoxide anions and the extreme reactivity of hydroxyl radicals ensure that apoptosis induction is restricted to transformed cells. The same signaling principle seems to be used when nitric oxide, a long-ranging signal is converted to the reactive peroxynitrite by Superoxide anions. These data indicate that natural antitumor mechanisms utilize similar signaling principles for specific apoptosis induction in transformed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albina JE, Cui S, Mateo RB, Reichner JS (1993) Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J Immunol 150:5080–5085

    PubMed  CAS  Google Scholar 

  • Albina JE, Reichner JS (1998) Role of nitric oxid in mediation of macrophage cytotoxicity an apoptosis. Cancer and Metastasis 17:39–53

    CAS  Google Scholar 

  • Ankarcrona M, Dypbukt JM, Bruno B, Nicotera P (1994) Interleukin-1-beta-induced nitric oxide production activates apoptosis in pancreatic RINm5F cells. Exp Cell Res 213:172–177

    PubMed  CAS  Google Scholar 

  • Antoshina E, Ostrowski LE (1997) TGF-beta-1 induces growth arrest and apoptosis but not ciliated cell differentiation in rat tracheal epithelial cell cultures. In Vitro Cellular and Developmental Biology 33:212–217

    CAS  Google Scholar 

  • Aoshima H, Satoh T, Sakai N, Yamada M, Enokido Y, Ikeuchi T, Hatanaka H (1997) Generation of free radicals during lipid hydroperoxide-triggered apoptosis in PC12h cells. Biochem. Biophys. Acta 1345:35–42

    PubMed  CAS  Google Scholar 

  • Arbault S, Pantano P, Sojic N, Amatore C, Best Belpomme M, Sarasin A, Vuillaume M (1997) Activation of the NADPH oxidase in human fibroblasts by mechanical intrusion of a single cell with an ultramicroelectrode. Carcinogenesis 18:569–574

    PubMed  CAS  Google Scholar 

  • Arrigo AP (1998) Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol Chem 379:19–26

    PubMed  CAS  Google Scholar 

  • Aruoma OI, Halliwell B, Hoey BM, Butler J (1988) The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochemical Journal 256:251–256

    PubMed  CAS  Google Scholar 

  • Aruoma OI, Halliwell B, Hoey BM, Butler J (1989) The antioxidant action of N-acetylcysteine. Its reaction with hydrogen peroxide, hydroxyl radical, Superoxide and hypochlorous acid. Free Radical Biology and Medicine 6:593–598

    PubMed  CAS  Google Scholar 

  • Asahi M, Fujii J, Suzuki K, Seo HG, Kuzuya T, Hori M, Tada M, Fujii S, Taniguchi N (1995) Inactivation of glutathione peroxidase by nitric oxide: implication for cytotoxicity. J Biol Chem 270:21035–21039

    PubMed  CAS  Google Scholar 

  • Babior BM (1995) Mechanism of activation of the respiratory burst oxidase. In: Davies KJA, Ursini F (eds) The oxygen paradox. Padova. CLEUP Univ Press, pp 749–756

    Google Scholar 

  • Backway KL, Mcculloch EA, Chow S, Hedley DW (1997) Relationships between the mitochondrial permeability transition and oxidative stress during ara-C toxicity. Cancer Res 57:2446–2451

    PubMed  CAS  Google Scholar 

  • Bagchi D, Bagchi M, Hassoun EA, Stohs SJ (1995) In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology 104:129–140

    PubMed  CAS  Google Scholar 

  • Banki K, Hutter E, Colombo E, Gonchoroff NJ, Perl A (1996) Glutathione levels and sensitivity to apoptosis are regulated by changes in transaldolase expression. J Biol Chem 271:32994–33001

    PubMed  CAS  Google Scholar 

  • Barcellos Hoff MH, Dix TA (1996) Redox-mediated activation of latent transforming growth factor-beta-1. Molecular Endocrinology 10:1077–1083

    Google Scholar 

  • Bauer G (1995) Resistance to TGF-β-induced elimination of transformed cells is required during tumor progression. Int J Oncol 6:1227–1229

    PubMed  CAS  Google Scholar 

  • Bauer G (Invited Review) (1996) Elimination of transformed cells by normal cells: a novel concept for the control of carcinogenesis. Histol Histopathol 11:237–255

    PubMed  CAS  Google Scholar 

  • Bauer G (1997) Interference of papilloma viruses with p53-dependent and-independent apoptotic pathways: clues to viral oncogenesis (Review-Hypothesis). Oncology Reports, 4, 273–275

    PubMed  CAS  Google Scholar 

  • Bauer MKA, Vogt M, Los M, Siegel J, Wesselborg S, Schulze Osthoff K (1998) Role of reactive oxygen intermediates in activation-induced CD95 (Apo/Fas) ligand expression. J Biol Chem 273:8040–8055

    Google Scholar 

  • Beaver JP, Waring P (1995) A decrease in intracellular glutathione concentration precedes the onset of apoptosis in murine thymocytes. Eur J Cell Biol 68:47–54

    PubMed  CAS  Google Scholar 

  • Beck E, Schäfer R, Bauer G (1997) Sensitivity of transformed fibroblasts for intercellular induction of apoptosis is determined by their transformed phenotype. Exp Cell Res 234:47–56

    PubMed  CAS  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and Superoxide. Proc Natl Acad Sci USA 87:1620–1624

    PubMed  CAS  Google Scholar 

  • Beg AA, Baltimore D (1996) An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 274:782–784

    PubMed  CAS  Google Scholar 

  • Bernardi P (1996) The permeability transition pore: control points of a cyclosporin Asensitive mitochondrial channel involved in cell death. Biochem. Biophys Acta 1275:5–9

    PubMed  Google Scholar 

  • Bishop CJ, Rzepcyk CM, Stenzel D, Anderson K (1987) The role of reactive oxygen metabolites in lymphocyte-mediated cytolysis. J Cell Science 87:473–482

    PubMed  CAS  Google Scholar 

  • Blanco FJ, Ochas RL, Schwarz H, Lotz M (1995) Chondrocyte apoptosis induced by nitric oxide. Am J Pathol 146:75–85

    PubMed  CAS  Google Scholar 

  • Brenner B, Ferlinz K, Grassme H, Weiler M, Koppenhoefer U, Dichgans J, Sandhoff K, Lang F, Gulbins E (1998) Fas/CD95/Apo-I activates the acidic sphingomyelinase via caspases. Cell Death Differ. 5:29–37

    PubMed  CAS  Google Scholar 

  • Briehl MM, Baker AF (1996) Modulation of the antioxidant defence as a factor in apoptosis. Cell death and Differentiation 3:63–70

    PubMed  CAS  Google Scholar 

  • Broaddus VC, Yang L, Scavo LM, Ernst JD, Boylan AM (1996) Asbestos induces apoptosis in human and rabbit pleural mesothelial cells via reactive oxygen species. J Clin Investigation 98:2050–2059

    CAS  Google Scholar 

  • Brockhaus F, Bruene B (1998) U937 apoptotic cell death by nitric oxide-Bcl-2 downregulation and caspase activation. Exp Cell Res 238:33–41

    PubMed  CAS  Google Scholar 

  • Bruene B, Messmer UK, Sandau K (1995) The role of nitric oxide in cell injury. Toxicol Letters 82-83:233–237

    Google Scholar 

  • Bruene B, Vonknethen A, Sandau KB (1998) Nitric oxide and its role in apoptosis. Eur J Pharmacol 351:261–272

    Google Scholar 

  • Bruno AP, Laurent G, Averbeck D, Demur C, Bonnet J, Bettaieb A, Levade T, Jaffrezou JP (1998) Lack of ceramide generation in TF-1 human myeloid leukemic cells resistant to ionizing radiation. Cell Death Diff 5:172–182

    CAS  Google Scholar 

  • Busciglio J, Yankner BA (1995) Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 378:776–779

    PubMed  CAS  Google Scholar 

  • Buske C, Becker D, Feuring Buske M, Hannig H, Wulf G, Schaefer C, Hiddenmann W, Woermann B (1997) TGF-beta inhibits growth and induces apoptosis in leukemic B cell precursors. Leukemia 11:386–392

    PubMed  CAS  Google Scholar 

  • Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunology today 15:7–10

    PubMed  CAS  Google Scholar 

  • Caelles C, Helmberg A, Karin M (1994) p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370:220–223

    PubMed  CAS  Google Scholar 

  • Candeias LP, Patel KB, Stratford MRL, Wardmann P (1993) Free hydroxyl radicals are formed on reaction between the neutrophil-derived species Superoxide anion and hypochlorous acid. FEBS 333:151–153

    CAS  Google Scholar 

  • Carson DA, Tan EM (1995) Apoptosis in rheumatic disease. Bulletin on the Rheumatic Diseases 44:1–3

    PubMed  CAS  Google Scholar 

  • Ceneviva GD, Tzeng E, Hoyt DG, Yee E, Gallagher A, Engelhardt JF, Kim YM, Billiar TR, Watkins SA, Pitt BR (1998) Nitric oxide inhibits lipopolysaccharide-induced apoptosis in pulmonary artery endothelial cells. Am J Physiol 19:L717–L728

    Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59:527–605

    PubMed  CAS  Google Scholar 

  • Chiba T, Takahashi S, Sato N, Ishii S, Kikuchi K (1996) Fas-mediated apoptosis is modulated by intracellular glutathione in human T cells. Eur J Immunol 26:1164–1169

    PubMed  CAS  Google Scholar 

  • Chlichlia K, Peter ME, Rocha M, Scaffidi C, Bucur M, Krammer PH, Schirrmacher V, Umansky V (1998) Caspase activation is required for nitric oxide-mediated, CD95(Apo-l/FAS)-dependent and independent apoptosis in human neoplastic lymphoid cells. Blood 91:4311–4320

    PubMed  CAS  Google Scholar 

  • Chmura SJ, Nodzenski E, Beckett MA, Kufe DW, Quintans J, Weichselbaum RR (1997) Loss of ceramide production confers resistance to radiation-induced apoptosis. Canc Res 57:1270–1275

    CAS  Google Scholar 

  • Christie NA, Slutsky AS, Freeman BA, Tanswell AK (1994) A critical role for thiol, but not ATP, depletion in 95% 02-mediated injury of preterm pneumocytes in vitro. Arch. Biochem. Biophys 313:131–138

    PubMed  CAS  Google Scholar 

  • Ciriolo MR, Palamara AT, Incerpi S, Lafavia E, Bue MC, De Vito P, Garaci E, Rotilio G (1997) Loss of GSH, oxidative stress, and decrease of intracellular pH as sequential steps in viral infection. J Biol Chem 272:2700–2708

    PubMed  CAS  Google Scholar 

  • Clutton S (1997) The importance of oxidative stress in apoptosis. British Medical Bulletin 53:662–668

    PubMed  CAS  Google Scholar 

  • Coffer PJ, Burgering BMT, Peppelenbosch MP, Bos JL, Kruijer W (1995) UV activation of receptor tyrosine kinase activity. Oncogene 11:561–569

    PubMed  CAS  Google Scholar 

  • Constantini P, Chernyak BV, Petronilli V, Bernardi P (1996) Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biol Chem 271:6746–6751

    Google Scholar 

  • Cossarizza A, Franeschi C, Monti D, Salvioli S, Bellesia E, Rivabene R, Biondo L, Rainaldi G, Tinari A, Malorini W (1995) Protective effect of N’-acetylcysteine in tumor necrosis factor alpha-induced apoptosis in U937 cells: the role of mitochondria. Exp Cell Res 220:232–240

    PubMed  CAS  Google Scholar 

  • Crompton M, Andreeva L (1993) On the involvement of a mitochondrial pore in reperfusion injury. Basic Res Cardiol 88:513–523

    PubMed  CAS  Google Scholar 

  • Cross AH, Manning PT, Keeling RM, Schmidt RE, Misko TP (1998) Peroxynitrite formation within the central nervous system in active multiple sclerosis. J Neuroimmunology 88:45–56

    CAS  Google Scholar 

  • Crow JP, Beckman JS, Mccord JM (1995) Sensitity of the essential zinc-thiolate moiety of yeast alcohol dehydrogenase to hypochlorite and peroxynitrite. Biochemistry 34:3544–3552

    PubMed  CAS  Google Scholar 

  • Crow JP, Spruell C, Chen J, Gunn C, Ischiropoulos H, Tsai M, Smith CD, Radi R, Koppenol WH, Beckman JS (1994) On the pH-dependent yield of hydroxyl radical products from peroxynitrite. Free Rad Biol Med 16:331–338

    PubMed  CAS  Google Scholar 

  • Cui S, Reichner JS, Matero RB, Albina JE (1994) Activated murine macrophages induce apoptosis in tumor cells through nitric oxide-dependent or-independent mechanism. Cancer Res 54:2462–2467

    PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Zingarelli B, Oconnor M, Salzman AL, Szabo C (1998) Effect of L-Buthionine-(S,R)-sulphoximine, an inhibitor of gamma-glutamylcysteine synthetase on peroxynitrite-and endotoxic shock-induced vascular failure. British J Pharamacol 123:525–537

    CAS  Google Scholar 

  • Darley Usmar V, Halliwell B (1996) Blood radicals. Reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharmaceutical Research 13:649–662

    Google Scholar 

  • Darnay BG, Aggarwal BB (1997) Early events in TNF signaling: a story of associations and dissociations. J Leukocyte Biology 61:559–566

    CAS  Google Scholar 

  • Das SK, Fanburg BL (1991) TGF-βl produces a’ prooxidant’ effect on bovine pulmonary artery endothelial cells in culture. Am J Physiol 261:L249–L254

    PubMed  CAS  Google Scholar 

  • Daugherty A, Dunn JL, Rateri DL, Heinecke JW (1994) Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest 94:437–444

    PubMed  CAS  Google Scholar 

  • Deas O, Dumont C, Mollereau B, Metivier D, Pasquier C, Bernard-Pomier G, Hirsch F, Charpentier B, Senik A (1997) Thiol-mediated inhibition of Fas and CD2 apoptoic signaling in activaated human peripheral T cells. Int Immun 9:117–125

    PubMed  CAS  Google Scholar 

  • Decaudin D, Marzo I, Brenner C, Kroemer G (1998) Mitochondria in chemotherapyinduced apoptosis: a prospective novel target of cancer therapy. Int J Oncol 12: 141–152

    PubMed  CAS  Google Scholar 

  • Deigner HP (1998) Apoptosis caused by oxidized LDL is manganese Superoxide dismutase an p53 dependent. FASEB Journal 12:461–4677

    PubMed  Google Scholar 

  • Delneste Y, Jeannin P, Sebille E, Aubry JP, Bonnefoy JY (1996) Thiols prevent Fas (CD95)-mediated T cell apoptosis by down-regulating membrane Fas expression. Europ J Immunol 26:2981–2988

    CAS  Google Scholar 

  • Denicola A, Souza JM, Radi R (1998) Diffusion of peroxynitrite across membranes. Proc Natl Acad SCci USA 95:3566–3571

    CAS  Google Scholar 

  • Dhanbhoora CM, Babson JR (1992) Thiol depletion induces lethal cell injury in cultured cardiomyocytes. Arch Biochem Biophys 293:130–139

    PubMed  CAS  Google Scholar 

  • Diekman D, Abo A, Johnston C, Segal AW, Hall A (1994) Interaction of Rac with p67-phox and regulation of phagocytic NADPH oxidase activity. Science 265: 531–533

    Google Scholar 

  • Dimmeler S, Haendeler J, Galle J, Zeiher AM (1997a) Oxidized low-density lipoprotein induces apoptosis of human endothelial cells by activation of CPP32-like proteases: a mechanistic clue to the’ response to injury’ hypothesis. Circulation 95: 1760–1763

    PubMed  CAS  Google Scholar 

  • Dimmeler S, Haendeler J, Nehls M, Zeiher AM (1997b) Suppression of apoptosis by nitric oxide via inhibition of interleukin-1-beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med 185:601–607

    PubMed  CAS  Google Scholar 

  • Dimmeler S, Haendeler J, Sause A. Zeiher AM (1998) Nitric oxide inhibits apo-1/Fasmediated cell death. Cell Growth & Differ 9:415–422

    CAS  Google Scholar 

  • Dimmeler S, Zeiher AM (1997) Nitric oxide and apoptosis: another paradigm for the double-edged role of nitric oxide. Nitric Oxide 1:275–281

    PubMed  CAS  Google Scholar 

  • Dobmeyer TS, Findhammer S, Dobmeyer JM, Klein SA, Raffel B, Hoelzer D, Helm EB, Kabelitz D, Rossol R (1997) Ex vivo induction of apoptosis in lymphocytes is mediated by oxidative stress: role for lymphocyte loss in HIV infection. Free Radical Biology Medicine 22:775–785

    PubMed  CAS  Google Scholar 

  • Dormann S, Schwieger A, Hanusch J, Häufel T, Engelmann I, Bauer G (1999) Intercellular induction of apoptosis through modulation of endogenous survival factor concentration: a review. Anticancer Res 19:105–112

    PubMed  Google Scholar 

  • Dusting GJ, Fennessy P, Yin ZL, Gurevich V (1998) Nitric oxide in atherosclerosisvascular protector or villain. Clinical and Experimental Pharmacology and Physiology 25 [Suppl S]:S34–S41

    CAS  Google Scholar 

  • Eckert S, Bauer G (1998) TGF-ß isoforms and fibroblast growth factor exhibit analogous indirect antioncogenic activity through triggering of intercellular induction of apoptosis. Anticancer Res 18:45–52

    PubMed  CAS  Google Scholar 

  • Edmiston KH, Shoji Y, Mizoi T, Ford R, Nachman A, Jessup JM (1998) Role of nitric oxide and Superoxide anion in elimination of low metastatic human colorectal carcinomas by unstimulated hepatic sinusoidal endothelial cells. Cancer Res 58:1524–1531

    PubMed  CAS  Google Scholar 

  • Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, Van der Vliet A (1998) Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391:393–397

    PubMed  CAS  Google Scholar 

  • Ermacora MR, Delfino JM, Cuenoud B, Schepartz A, Fox RO (1992) Conformationdependent cleavage of staphylococcal nuclease with a disulfide-linked iron chelate. Proc. Natl Acad Sci USA 89:6383–6387

    PubMed  CAS  Google Scholar 

  • Ermacora MR, Ledmann DW, Hellinga HW, Hsu GW, Fox RO (1994) Mapping staphylococcal nuclease conformation using an EDTA-Fe derivative attached to genetically engineered cysteine residue. Biochemistry 33:13625–13641

    PubMed  CAS  Google Scholar 

  • Estevez AG, Spear N, Manuel SM, Radi R, Henderson CE, BArbeito L, Beckman JS (1998) Nitric oxide and Superoxide contribute to motor neuron apoptosis induced by trophic factor deprivation. J Neuroscience 18:923–931

    CAS  Google Scholar 

  • Fernandez RS, Cotter TG (1994) Apoptosis or necrosis: intracellular levels of glutathione influence mode of cell death. Biochem Pharm 48:675–681

    Google Scholar 

  • Ferrai R, Agnoletti L, Comini L, Gaia G, Bachetti T, Cargnoni A, Ceconi C, Curello S, Visioli O (1998) Oxidative stress during myocardial ischemia and heart failure. European Heart Journal 19 (Suppl. B):B2-B11

    Google Scholar 

  • Filep JG, Baron C, Lachance S, Perreault C, Chan JSD (1996) Involvement of nitric oxide in target-cell lysis and DNA fragmentation induced by murine natural killer cells. Blood 87:5136–5143

    PubMed  CAS  Google Scholar 

  • Fukuo K, Hata S, Suhara T, Nakahashi T, Shinto Y, Tsujimoto Y, Morimoto S, Ogihara T (1996) Nitric oxide induces upregulation of Fas and apoptosis in vascular smooth muscle. Hypertension 27:823–826

    PubMed  CAS  Google Scholar 

  • Gagnon C, Leblond FA, Filep JG (1998) Peroxynitrite production by human neutrophils, monocytes and lymphocytes challenged with lipopolysaccharide. FEBS Letters 431:107–110

    PubMed  CAS  Google Scholar 

  • Gansauge S, Nussler AK, Beger HG, Gansauge F (1998) Nitric oxide-induced apoptosis in human pancreatic carcinoma cell lines is associated with a G(l)-arrest an increase of the cyclin-dependent kinase inhibitor P21 (WAF1/CIP1) Cell Growth Differ 9:611–617

    PubMed  CAS  Google Scholar 

  • Ghadge GD, Lee JP, Bindokas VP, Jordan J, Ma L, Miller RJ, Roos RP (1997) Mutant Superoxide dismutase-1-linked familial amyotrophic lateral sclerosis: molecular mechanisms of neuronal cell death and protection. J Neuroscience 17:8756–8766

    CAS  Google Scholar 

  • Ghibelli L, Coppola S, Rotilio G, Lafavia E, Maresca V, Ciriolo MR (1995) Non-oxidative loss of glutathione in apoptosis via GSH extrusion. Biochem Biophys Res Comm 216:313–320

    PubMed  CAS  Google Scholar 

  • Ghibelli L, Fanelli C, Rotilio G, Lafavia E, Coppola S, Colussi C, Civitarealel P, Ciriolo MR (1998) Rescue of cells from apoptosis by inhibition of active GSH extrusion. FASEB J 12:479–486

    PubMed  CAS  Google Scholar 

  • Guussen A, Schaerling B, Jaworska M, Bartling A, Rasche K, Schultze Werninghaus G (1997) Oxidant scavenger function of ambroxol in vitro: a comparison with N-acetylcysteine. Research in Experimental Medicine 196:389–398

    Google Scholar 

  • Gonzalez Zulueta M, Ensz LM, Mukhina G, Lebovitz RM, Zwacka RM, Engelhardt JF, Oberley LW, Dawson VL, Dawson TM (1998) Manganese Superoxide dismutase protects nNOS neurons form NMDA and nitric oxide mediated neurotoxicity. J Neuroscience 18:2040–2055

    CAS  Google Scholar 

  • Gow AJ, Thorn SR, Ischiropoulos H (1998) Nitric oxide and peroxynitrite-mediated pulmonary cell death. Am J Physiol 274:L112–L118

    PubMed  CAS  Google Scholar 

  • Gressner AM, Lahme B, Mannherz HG, Polzar B (1997) TGF-beta-mediated hepatocellular apoptosis by rat and human hepatoma cells and primary rat hepatocytes. Journal of Hepatology 26:1079–1092

    PubMed  CAS  Google Scholar 

  • Grisham MB, Jefferson MM, Melton DF, Thomas EL (1984) Chlorination of endogenous amines by isolated neutrophils: ammonia-dependent bactericidal cytotoxic and cytolytic effects of the chloramines. J Biol chem 259:10404–10413

    PubMed  CAS  Google Scholar 

  • Grune T, Blasig IE, Sitte N, Roloff B, Haseloff R, Davies KJA (1998) Peroxynitrite increases the degradation of aconitase and other cellular proteins by proteasome. J Biol Chem 273:10857–10862

    PubMed  CAS  Google Scholar 

  • Gulbins E, Brenen B, Schlottmann K, Welsch J, Heinle H, Koppenhoefer U, Linderkamp O, Coggeshall KM, Lang F (1996) Fas-regulated programmed cell death is mediated by a Ras-regulated O2-synthesis. Immunology 89:205–212

    PubMed  CAS  Google Scholar 

  • Gulbins E, Welsch J, Lepple Wienhuis A, Heinle A, Lang F (1997) Inhibition of Fasinduced apoptotic cell death by osmotic cell shrinkage. Biochem. Biophys Res Communications 236:517–521

    CAS  Google Scholar 

  • Hackenjos K, Langer C, Zabel S, Bauer G (1996) Transformed cells trigger induction of their own apoptosis in coculture with normal cells. Oncology Reports 3:27–31

    PubMed  CAS  Google Scholar 

  • Haimovitz-Friedman A, Kan C-C, Ehleiter D, Persaud RS, Mcloughlin M, Fuks Z, Kolesnick RN (1994) Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 180:525–535

    PubMed  CAS  Google Scholar 

  • Hainaut P, Milner J (1993) Redox modulation of p53 conformation and sequencespecific DNA binding in vitro. Cancer Research 53:4469–4473

    PubMed  CAS  Google Scholar 

  • Hajri A, Metzger E, Vallat F, Coffy S, Flatter E, Evrard S, Marescaux J, Aprahamian M (1998) Role of nitric oxide in pancreatic tumour growth-in vivo and in vitro studies. British J Cancer 78:841–849

    CAS  Google Scholar 

  • Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017

    PubMed  CAS  Google Scholar 

  • Hanada H, Kashiwagi A, Takehara Y, Kanno T, Yabuki M, Sasaki J, Inoue M, Utsumi K (1997) Do reactive oxygen species underlie the mechanism of apoptosis in the tadpole tail? Free Radical Biology Medicine 23:294–301

    PubMed  CAS  Google Scholar 

  • Häufel T, Dormann S, Hanusch J, Schwieger A, Bauer G (1999) Three distinct roles for TGF-beta during intercellular induction of apoptosis: a review. Anticancer Res 19:105–112

    PubMed  Google Scholar 

  • Hebestreit H, Dibbert B, Balatti I, Braun D, Schapowal A, Blaser K, Simon HU (1998) Disruption of Fas receptor signaling by nitric oxide in eosinophils. J Exp Med 187:415–425

    PubMed  CAS  Google Scholar 

  • Hennet T, Richter C, Peterhans E (1993) Tumor necrosis factor alpha induces superoxide generation in mitochondria of L929 cells. Biochem J 289:587–592

    PubMed  CAS  Google Scholar 

  • Hipp ML, Bauer G (1997) Intercellular induction of apoptosis in transformed cells does not depend on p53. Oncogene 15:791–797

    PubMed  CAS  Google Scholar 

  • Hippeli S, Rohnert U, Koske D, Elstner EF (1997) OH-radical-type reactive oxygen species derived from Superoxide and nitric oxide: a sensitive method for their determination and differentiation. Zeitschrift fìr Naturforschung 52:564–570

    CAS  Google Scholar 

  • Hirsch T, Marzo I, Kroemer G (1997a) Role of the mitochondrial permeability transition pore in apoptosis. Bioscience Reports 17:67–76

    PubMed  CAS  Google Scholar 

  • Hirsch T, Marchetti P, Susin SA, Dallaporta B, Zamzami N, Marzo I, Geuskens M, Kroemer G (1997b) The apoptosis-necrosis paradox: apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene 15:1573–1581

    PubMed  CAS  Google Scholar 

  • Häfler P, Wehrle I, Bauer G (1993) TGF-ß induces an inhibitory effect of normal cells directed against transformed cells. Int J Cancer 54:125–130

    Google Scholar 

  • Hortelano S, Dallaporta B, Zamzami N, Hirsch T, Susin SA, Marzo I, Bosca L, Kroemer G (1997) Nitric oxide induces apoptosis via triggering mitochondrial permeability transition. FEBS Letters 410:373–377

    PubMed  CAS  Google Scholar 

  • Hsing AY, Kadomatsu K, Bonham MJ, Danielpour D (1996) Regulation of apoptosis induced by transforming growth factor-beta-1 in nontumorigenic and tumorigenic rat prostatic epithelial cell lines. Cancer Research 56:5146–5149

    PubMed  CAS  Google Scholar 

  • Hu ML, Louise S, Cross CE, Motchnik P, Halliwell B (1993) Antioxidant protection against hypochlorous acid in human plasma. J Lab Clin Med 121:257–262

    PubMed  CAS  Google Scholar 

  • Huang RP, Wu JX, Fan Y, Adamson ED (1996) UV activates growth factor receptors via reactive oxygen intermediates. J Cell Biol 133:211–220

    PubMed  CAS  Google Scholar 

  • Hug H, Enari M, Nagat S (1994) No requirement for reactive oxygen intermediates of Fas-mediated apoptosis. FEBS Letters 351:311–313

    PubMed  CAS  Google Scholar 

  • Hug H, Strand S, Grambihler A, Galle J, Hack V, Stremmel W, Krammer PH, Galle PR (1997) Reactive oxygen intermediates are involved in the induction of CD95 ligand mRNA expression b cytostatic drugs in hepatoma cells. J Biol Chemistry 272:28191–28193

    CAS  Google Scholar 

  • Huie RE, Padraja S (1993) The reaction of NO with Superoxide. Free Rad Res Comm 18:195–199

    CAS  Google Scholar 

  • Inayat Hussain SH, Couet C, Cohen GM, Cain K (1997) Processing/activation of CPP32-like proteases is involved in transforming growth factor beta-1-induced apoptosis in rat hepatocytes. Hepatology 25:1516–1526

    PubMed  CAS  Google Scholar 

  • loannidis I, Batz M, Kirsch M, Korth HG, Sustmann R, Degroot H (1998) Low toxicity of nitric oxide against endothelial cells under physiological oxygen partial pressures. Biochem Journal 329:425–430

    Google Scholar 

  • Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, Sundaresan M, Finkel T, Goldschmidt-Clermon PJ (1997) Mitogenic signaling mediated by oxidants in rastransformed fibroblasts. Science 275:1649–1652

    PubMed  CAS  Google Scholar 

  • Ischiropoulos H, Zhu J, Tsai M, Martin JC, Smith CD, Beckman JS (1992) Peroxynitrite-mediated tyrosine nitration catalyzed by Superoxide dismutase. Arch Biochem Biophys 298:431–437

    PubMed  CAS  Google Scholar 

  • Islam KN, Kayanoki Y, Kaneto H, Suzuki K, Asahi M, Fujii J, Taniguchi N (1997) TGF-beta-1 triggers oxidative modifications and enhances apoptosis in HIT cells through accumulation of reactive oxygen species by suppression of catalase and glutathione peroxidase. Free Radical Biology and Medicine 22:1007–1017

    PubMed  CAS  Google Scholar 

  • Iwashina M, Shichiri M, Marumo F, Hirata Y (1998) Transfection of inducible nitric oxide synthase gene causes apoptosis in vascular smooth muscle cells. Circulation 98:1212–1218

    PubMed  CAS  Google Scholar 

  • Jacobson D (1996) Reactive oxygen species and programmed cell death. TIBS 21:83–86

    PubMed  CAS  Google Scholar 

  • Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinsons’s disease. Neurology 47:S161–S170

    PubMed  CAS  Google Scholar 

  • Johnson TM, Yu ZX, Ferrans VJ, Lowenstein RA, Finkel T (1996) Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci USA 93:11848–11852

    PubMed  CAS  Google Scholar 

  • Jordan JD, Iyengar R (1998) Ras, Superoxide and signal transduction. Biochemical Pharmacology 55:1339–1346

    Google Scholar 

  • Joseph P, Jaiswal AK (1998) NAD(P)H:quinone oxidoreductase 1 reduces the mutagenicity of DNA caused by NADPH:P450 reductase-activated metabolites of benzo(a)pyrene quinones. British Journal of Cancer 77:709–719

    PubMed  CAS  Google Scholar 

  • Jun CD, Lee DK, Chun YH, Yuon DW, Park SK, Song JH, Lee MS, Choi HS, Han EJ, Park YH, Yuon CH, Chung HT (1996) High-dose nitric oxide induces apoptosis in HL-60 human myeloid leukemia cells. Exp Mol Medicine 28:101–108

    CAS  Google Scholar 

  • Jürgensmeier JM, Viesel E, Höfler P, Bauer G (1994a) TGF-β-treated normal fibroblasts eliminate transformed fibroblasts by induction of apoptosis. Cancer Research 54:393–398

    PubMed  Google Scholar 

  • Jürgensmeier JM, Höfler P, Bauer G (1994b) TGF-βS-induced elimination of transformed fibroblasts by normal cells: independence of cell-to-cell contact and dependence on ROS. International Journal of Oncology 5:525–531

    PubMed  Google Scholar 

  • Jürgensmeier J, Bauer G (1997a) Interference of Bcl-2 with intercellular control of car-cinogenesis. Int J Cancer 71:698–704

    PubMed  Google Scholar 

  • Jürgensmeier J, Panse J, Schäfer R, G. Bauer (1997b) Reactive oxygen species as mediators of the transformed phenotype. Int J Cancer 70:587–589

    PubMed  Google Scholar 

  • Kayanoki Y, Fujii J, Suzuki K, Kawata S, Matsuzawa Y, Taniguchi N (1994) Suppression of antioxidative enzyme expression by transforming growth factor beta-1 in rat hepatocytes. J Biol Chem 269:15488–15492

    PubMed  CAS  Google Scholar 

  • Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, Germayer A, Steiner SM, Brucekeller AJ, Hutchins JB, Mattson MP (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neuroscience 18:687–697

    CAS  Google Scholar 

  • Kettle AJ, Gedye CA, Hampton MB, Winterbourn CC (1995) Inhibition of myeloperoxidase by benzoic acid hydrazides. Biochemical Journal 308:559–563

    PubMed  CAS  Google Scholar 

  • Kettle AJ, Gedye CA, Winterbourn CC (1997) Mechanisms of inactivation of myeloperoxidase by 4-aminobenzoic acid hydrazide. Biochem Journal 321:503–508

    CAS  Google Scholar 

  • Kettle AJ, Winterbourn CC (1997) Myeloperoxidase: a key regulator of neutrophil oxidant production. Redox Report 3:3–15

    CAS  Google Scholar 

  • Kim YM, De Vera ME, Wathins SC, Billar SC (1997a) Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor-alpha-induced apoptosis by inducing heat shock protein 70 expression. J Biol Chem 272:1402–1411

    PubMed  CAS  Google Scholar 

  • Kim YM, Talanian RV, Billiar TR (1997b) Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanism. J Biol Chem 272:31138–31148

    PubMed  CAS  Google Scholar 

  • Knaus UG, Heyworth PG, Evans T, Curnutte JT, Bokoch GM (1991) Regulation of phagocyte oxygen radical production by the GTP-binding protein rac 2. Science 254:1512–1515

    PubMed  CAS  Google Scholar 

  • Knebel A, Rahmsdorf HJ, Ullrich A, Herrlich P (1996) Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO Journal 15:5314–5325

    PubMed  CAS  Google Scholar 

  • Kolesnick RN, Haimovitz-Friedman A, Fuks Z (1994) The sphingomyelin signal transduction pathway mediates apoptosis for tumor necrosis factor, Fas and ionizing radiation. Biochem Cell Biol 72:471–474

    PubMed  CAS  Google Scholar 

  • Koppenol WH (1993) The Centennial of the Fenton Reaction. Free Rad Biol Med 15:645–651

    PubMed  CAS  Google Scholar 

  • Kretzschmar HA, Giese A, Brown DR, Herms J, Keller B, Schmidt B, Groschup M (1997) Cell death in prion disease. J Neural Transm [Suppl] 50:191–210

    CAS  Google Scholar 

  • Kroemer G (1997) The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med 3:614–620

    PubMed  CAS  Google Scholar 

  • Kroemer G, Petit P, Zamzami N, Vayssiere JL, Mignotte B (1995) The biochemistry of programmed cell death. FASEB J 9:1277–1287

    PubMed  CAS  Google Scholar 

  • Kroemer G, Zamzami N, Susin SA (1997) Mitochondrial control of apoptosis. Immunol Today 18:44–51

    PubMed  CAS  Google Scholar 

  • Lafron C, Mathieu C, Guerrin M, Pierre O, Vidal S, Valette A (1996) Transforming growth factor beta-1-induced apoptosis in human ovarian carcinoma cells: protection by the antioxidant N-acetylcysteine and Bcl-2. Cell Growth Differ 7:1095–1104

    Google Scholar 

  • Langer C, Jürgensmeier JM, Bauer G (1996) Reactive oxygen species act both at TGF-β3-dependent and-independent steps during induction of apoptosis of transformed cells by normal cells. Exp Cell Res 222:117–124

    PubMed  CAS  Google Scholar 

  • Langley RE, Palayoor ST, Coleman CN, Bump EA (1993) Modifiers of radiationinduced apoptosis. Radiation Res 136:320–326

    PubMed  CAS  Google Scholar 

  • Lee SL, Wang WW, Fanburg BL (1998) Superoxide as an intermediate signal for serotonin-induced mitogenesis. Free Radical Biology Medicine 24:855–858

    PubMed  Google Scholar 

  • Leib SL, Kim YS, Chow LL, Sheldon RA, Tauber MG (1996) Reactive oxygen intermediates contribute to necrotic and apoptotic neuronal injury in an infant rat model of bacterial meningitis due to group B streptococci. J Clin Investigation 98:2632–2639

    CAS  Google Scholar 

  • Leist M, Nicotera P (1998) Apoptosis, excitotoxicity, and neuropathology. Exp Cell Res 239:183–201

    PubMed  CAS  Google Scholar 

  • Li S, Nguyen TH, Schoneich C, Borchardt RT (1995) Aggregation and precipitation of human relaxin induced by metal-catalyzed oxidation. Biochemistry 34:5762–5772

    PubMed  CAS  Google Scholar 

  • Li PF, Dietz R, Vonharsdorf R (1997a) Differential effect of hydrogen peroxide and Superoxide anion on apoptosis and proliferation of vascular smooth muscle cells. Circulation 96:3602–3609

    PubMed  CAS  Google Scholar 

  • Li JR, Billiar TR, Talanian RV, Kim YM (1997b) Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. BBRC 240:419–424

    PubMed  CAS  Google Scholar 

  • Lin KT, Xue JY, Lin MC, Spokas EG, Sun FF, Wong PYK (1998) Peroxynitrite induces apoptosis of HL-60 cells by activation of a caspase-3 family protease. Am J Physiol Cell Physiol 43:855–860

    Google Scholar 

  • Lin KT, Xue JY, Nomen M, Spur B, Wong PYK (1995) Peroxynitrite-induced apoptosis in HL-60 cells. J Biol Chem 270:16487–16490

    PubMed  CAS  Google Scholar 

  • Lin KT, Xue JY, Sun FF, Wong PYK (1997a) Reactive oxygen species participate in peroxynitrite-induced apoptosis in HL-60 cells. Biochem Biophys Res Communications 230:115–119

    CAS  Google Scholar 

  • Lin KT, Xue JY, Wong PYK (1997b) Bcl-2 blocks peroxynitrite-induced apoptosis in HL-60 cells, an association with reactive oxygen species. Inflamm Res 46 Suppl 2:S157–S158

    Google Scholar 

  • Liu B, Andrieu Abadie N, Levade T, Zhang P, Obeid LM, Hannun YA (1998) Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor-alphainduced cell death. J Biol Chem 273:11313–11320

    PubMed  CAS  Google Scholar 

  • Liu B, Hannun YA (1997) Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione. J Biol Chem 272:16281–16287

    PubMed  CAS  Google Scholar 

  • Liu D (1996) The roles of free radicals in amyotrophic lateral sclerosis. J Mol Neuroscience 7:159–167

    CAS  Google Scholar 

  • Lopez Farre A, Rodriguezfeo JA, Demiguel LS, Rico L, Casado S (1998) Role of nitric oxide in the control of apoptosis in the microvasculature. Int J Biochem Cell Biol 30:1095–1106

    PubMed  CAS  Google Scholar 

  • Lopez Farre A, De Miguel LS, Caramelo C, Gomez Macias J, Garcia R, Mosquera JR, De Frutos T, Millas I, Rivas F, Echezarreta G, Casado S (1997) Role of nitric oxide in autocrine control of growth and apoptosis of endothelial cells. Am J Physiol 272:H760–H768

    PubMed  CAS  Google Scholar 

  • Luo Y, Umegaki H, Wang X, Abe R, Roth GS (1998) Dopamine induces apoptosis through an oxidation-involved SAPK/JNK activation pathway. J Biol Chem 273: 3756–3764

    PubMed  CAS  Google Scholar 

  • Macho A, Blazquez MV, Navas P, Munoz E (1998) Induction of apoptosis by vanilloid compounds does not require de novo gene transcription and activator protein 1 activity. Cell Growth Diff 9:277–286

    PubMed  CAS  Google Scholar 

  • Macho A, Hirsch T, Marzo I, Marchetti P, Dallaporta B, Susin SA, Zamzami N, Kroemer G (1997) Glutathione depletion is an early and calcium clcvation is a late event of thymocyte apoptosis. J Immun 158:4612–4619

    PubMed  CAS  Google Scholar 

  • Macmillan Crow LA, Crow JP, Thompson JA (1998) Peroxynitrite-mediated inactivation of manganese Superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry 37:1613–1622

    PubMed  CAS  Google Scholar 

  • Mannick JB, Miao XQ, Stamler JS (1997) Nitric oxide inhibits Fas-induced apoptosis. J Biol Chem 272:24125–24128

    PubMed  CAS  Google Scholar 

  • Marchetti P, Decaudin D, Macho A, Zamzami N, Hirsch T, Susin SA, Kroemer G (1997) Redox regulation of apoptosis: impact of thiol oxidation status on mitochondrial function. Eur J Immun 27:289–296

    CAS  Google Scholar 

  • Marinovich M, Viviani B, Corsini E, Ghilardi F, Galli CL (1996) NF-kappaB activation by triphenyltin triggers apoptosis in HL-60 cells. Exp Cell Res 226:98–104

    PubMed  CAS  Google Scholar 

  • Marushige K, Marushige Y (1994) Induction of apoptosis by transforming growth factor beta-1 in glioma and trigeminal neurinoma cells. Anticancer Research 14: 2419–2424

    PubMed  CAS  Google Scholar 

  • Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, Remy R, Xie ZH, Reed JC, Kroemer G (1998) The permeability transition pore complex: a target for apoptosis regulation by caspases and Bcl-2-related proteins. J Exp Med 187:1261–1271

    PubMed  CAS  Google Scholar 

  • McCord JM (1995) Superoxide radical: controversies, contradictions, and paradoxes. Proc Soc Exp Biol Med 209:112–117

    PubMed  CAS  Google Scholar 

  • McCord JM, Omar BA (1993) Sources of free radicals. Toxicol Ind Health 9:23–37

    PubMed  CAS  Google Scholar 

  • Meier B, Radeke HH, Selle S, Younes M, Sies H, Resch K, Habermehl GG (1989) Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumor necrosis factor-alpha. Biochemical Journal 263:539–546

    PubMed  CAS  Google Scholar 

  • Meier B, Cross AR, Hancock JT, Kaup FJ, Jones OTG (1991) Identification of a superoxide-generating NADPH oxidase system in human fibroblasts. Biochem Journal 275:241–246

    CAS  Google Scholar 

  • Meier B, Jesaitis AJ, Emmendoerffer A, Roesler J, Quinn MT (1993) The cytochrome B-558 molecules involved in the fibroblast and polymorphonuclear leucocyte superoxide-generating NADPH oxidase systems are structurally and genetically distinct. Biochem Journal 289:481–486

    CAS  Google Scholar 

  • Meister A (1988) Gutathion metabolism and its selective modification. J Biol Chem 263:17205–17208

    PubMed  CAS  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Ann Rev Biochem 52:711–760

    PubMed  CAS  Google Scholar 

  • Melkova Z, Lee SB, Rodriguez D, Esteban M (1997) Bcl-2 prevents nitric oxidemediated apoptosis and poly(ADP-ribose) polymerase cleavage. FEBS Letters 403:273–278

    PubMed  CAS  Google Scholar 

  • Messmer UK, Bruene B (1996) Nitric oxide-induced apoptosis: p53-dependent and p53-independent signaling pathways. Biochem J 319:299–305

    PubMed  CAS  Google Scholar 

  • Messmer UK, Ankarcrona M, Nicotera P, Bruene B (1994) p53 expression in nitric oxide-induced apoptosis. FEBS Letters 355:23–26

    PubMed  CAS  Google Scholar 

  • Messmer UK, Lapetina EG, Bruene B (1995) Nitric oxide-induced apoptosis in RAW 264.7 macrophages is antagonized by protein kinase C-and protein kinase A-activating compounds. Mol Pharmacol 47:757–765

    PubMed  CAS  Google Scholar 

  • Messmer UK, Reed JC, Bruene B (1996) Bcl-2 protects macrophages from nitric oxideinduced apoptosis. J Biol Chem 271:20192–20197

    PubMed  CAS  Google Scholar 

  • Michael JM, Lavin MF, Wattters DJ (1997) Resistance to radiation-induced apoptosis in Burkitt’s lymphoma cells is associated with defective ceramide signaling. Canc Res 57:3600–3605

    CAS  Google Scholar 

  • Mignotte B, Vayssiere JL (1998) Mitochondria and apoptosis. Eur J Biochem 252:1–15

    PubMed  CAS  Google Scholar 

  • Mohammed JR, Mohammed BS, Pawluk LJ, Bucci DM, Baker NR, Davis WB (1988) Purification and cytotoxic potential of myeloperoxidase in cystic fibrosis sputum. J Lab Clin Med 112:711–720

    PubMed  CAS  Google Scholar 

  • Mohazzab HKM, Wolin MS (1994) Sites of Superoxide anion production detected by lucigenin in calf pulmonary artery smooth muscle. Am J Physiol 267:L815–L822

    PubMed  CAS  Google Scholar 

  • Muehl H, Sandau K, Bruene B, Briner VA, Pfeilschifter J (1996) Nitric oxide donors induce apoptosis in glomerular mesangial cells, epithelial cells and endothelial cells. Eur J Pharmacol 317:137–149

    CAS  Google Scholar 

  • Mullauer L, Grasl Kraupp B, Bursch W, Schulte Hermann R (1996) Transforming growth factor beta-1-induced cell death in preneoplastic foci of rat liver and sensitization by the antiestrogen tamoxifen. Hepatology 23:840–847

    PubMed  CAS  Google Scholar 

  • Nagra RM, Becher B, Tourtellotte WW, Antel JP, Gold D, Paladino T, Smith RA, Nelson JR, Reynolds WF (1997) Immunohistochemical and genetic evidence of myeloperoxidase involvement in multiple sclerosis. J Neuroimmunol 78:97–107

    PubMed  CAS  Google Scholar 

  • Nappi AJ, Vass E (1998) Hydroxyl radical formation resulting from the interaction of nitric oxide and hydrogen peroxide. Biochem Biophys Acta 1380:55–63

    PubMed  CAS  Google Scholar 

  • Noack H, Lindenau J, Rothe F, Asayama K, Wolf G (1998) Differential expression of Superoxide dismutase isoforms in neuronal and glial compartments in the course of excitotoxically mediated neurodegeneration-relation to oxidative and nitrergic stress. Glia 23:285–297

    PubMed  CAS  Google Scholar 

  • Obeid LM, Linardic CM, Karolak LA, Hannun YA (1993) Programmed cell death induced by ceramide. Science 259:1769–1771

    PubMed  CAS  Google Scholar 

  • Oberhammer FA, Pavelka M, Sharma S, Tiefenbacher R, Purchio AF, Bursch W, Schulte Hermann R (1992) Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor beta-1. Proc Natl Acad Sci USA 89:5408–5412

    PubMed  CAS  Google Scholar 

  • Ohba M, Shibanuma M, Kuroki T, Nose K (1994) Production of hydrogen peroxide by transforming growth factor-β1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J Cell Biol 126:1079–1088

    PubMed  CAS  Google Scholar 

  • Oishi K, Machida K (1997) Inhibition of neutrophil apoptosis by antioxidants in culture medium. Scand. J Immunol 45:21–27

    PubMed  CAS  Google Scholar 

  • Packer MA, Porteous CM, Murphy MP (1996) Superoxide production by mitochondria in the presence of nitric oxide forms peroxynitrite. Biochemistry and Molecular Biology International 40:527–534

    PubMed  CAS  Google Scholar 

  • Padmaja S, Squadrito GL, Pryor WA (1998) Inactivation of glutathione peroxidase by peroxynitrite. Archives of Biochemistry and Biophysics 349:1–6

    PubMed  CAS  Google Scholar 

  • Panse J, Hipp ML, Bauer G (1997) Fibroblasts transformed by chemical carcinogens are sensitive for intercellular induction of apoptosis: implications for the control of oncogenesis. Carcinogenesis 18:259–264

    PubMed  CAS  Google Scholar 

  • Parchment RE (1991) Programmed cell death apoptosis in murine blastocysts: extracellular free radicals, polyamines and other cytotoxic agents. In vivo 5:493–500

    PubMed  CAS  Google Scholar 

  • Petronilli V, Nicolli A, Costantini P, Colonna R, Bernardi P (1994a) Regulation of the permeability transition pore, a voltage-dependent mitochondrial channel inhibited by cyclosporin A. Biochimica Biophysica Acta 1187:255–259

    CAS  Google Scholar 

  • Petronilli V, Constantini P, Scorrano L, Colonna R, Passamonti S, Bernardi P (1994b) The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxydation-reduction state of vicinal thiols-Increase of the gating potential by oxidants and its reversal by reducing agents..1 Biol Chem 269:16638–16642

    CAS  Google Scholar 

  • Picht G, Hundertmark N, Schmitt C P, Bauer G (1995) Clonal analysis of the effect of TGF-β on the apoptosis-inducing activity of normal cells. Exp Cell Research 218:71–78

    CAS  Google Scholar 

  • Pierce GB, Parchment RE, Lewellyn AL (1991) Hydrogen peroxide as a mediator of programmed cell death in the blastocyst. Differentiation 46:181–186

    PubMed  CAS  Google Scholar 

  • Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389:300–305

    PubMed  CAS  Google Scholar 

  • Quillet-Mary A, Jaffrezou JP, Mansat V, Bordier C, Naval J, Laurant G (1997) Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem 272:21388–21395

    PubMed  CAS  Google Scholar 

  • Radi R, Beckman IS, Bush KM, Freeman BA (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of Superoxide and nitric oxide. Arch Biochem Biophys 288:481–484

    PubMed  CAS  Google Scholar 

  • Radrizzani M, Accornero P, Delia D, Kurrle R, Colombo MP (1997) Apoptosis induced by HIV-gpl20 in a Thl clone involves the generation of reactive oxygen intermediates downstream CD95 triggering. FEBS letters 411:87–92

    PubMed  CAS  Google Scholar 

  • Rainwater R, Parks D, Anderson ME, Tegtmeyer P, Mann K (1995) Role of cysteine residues in regulation of p53 function. Mol Cell Biol 15:3892–3903

    PubMed  CAS  Google Scholar 

  • Ramos CL, Pou S, Britigan BE, Cohen MS, Rosen GM (1992) Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes. J Biol Chem 267:8307–8312

    PubMed  CAS  Google Scholar 

  • Ratan RR, Murphy TH, Baraban JM (1994a) Oxidative stress induces apoptosis in embryonic cortical neurons. J Neurochem 62:376–379

    PubMed  CAS  Google Scholar 

  • Ratan RR, Murphy TH, Baraban JM (1994b) Macromolecular synthesis inhibitors prevent oxidative stress-induced apoptosis in embryonic cortical neurons by shunting cysteine from protein synthesis to glutathione. J Neurosci 14:4385–4392

    PubMed  CAS  Google Scholar 

  • Rauen U, Degroot H (1998) Cold-induced release of reactive oxygen species as a decisive mediator of hypothermia injury to cultured liver cells. Free Radicals Biol Medicine 24:1316–1323

    CAS  Google Scholar 

  • Reiter RJ (1998) Oxidative damage in the central nervous system-protection by melatonin. Progress in Neurobiology 56:359–384

    PubMed  CAS  Google Scholar 

  • Richeson CE, Mulder P, Bowry VW, Ingold KU (1998) The complex chemistry of peroxynitrite decomposition-new insights. J Am Chem Soc 120:7211–7219

    CAS  Google Scholar 

  • Richter C (1997) Reactive oxygen and nitrogen species regulate mitochondrial Ca-2+ homeostasis and respiration. Bioscience Reports 17:53–66

    PubMed  CAS  Google Scholar 

  • Richter C (1998) Nitric oxide and its congeners in mitochondria-implications for apoptosis. Environmental Health Perspectives 106 Suppl 5:1125–1130

    Google Scholar 

  • Richter C, Schweizer M, Cossarizza A, Franceschi C (1996) Control of apoptosis by the cellular ATP level. FEBS Letters 378:107–110

    PubMed  CAS  Google Scholar 

  • Roberts ES, Lin HL, Crowley JR, Vuletich JL, Osawa Y, Hollenberg PF (1998) Peroxynitrite-mediated nitration of tyrosine and inactivation of the catalytic activity of cytochrome P450 2B1. Chemical Research in Toxicology 11:1067–1074

    PubMed  CAS  Google Scholar 

  • Rodenas J, Mitjavila MT, Carbonell T (1998) Nitric oxide inhibits Superoxide production by inflammatory polymorphonuclear leukocytes. Am J Physiol 274:C827–C830

    PubMed  CAS  Google Scholar 

  • Rollet Labelle E, Grange MJ, Elbim C, Marquetty C, Gougerotpocidalo MA, Pasquier C (1998) Hydroxyl radical as a potential intracellular mediator of polymorphonucleas neutrophil apoptosis. Free Radical Biology and Medicine 24:563–572

    PubMed  CAS  Google Scholar 

  • Rubbo H (1998) Nitric oxide and peroxynitrite in lipid peroxidation. Medicina 58: 361–368

    PubMed  CAS  Google Scholar 

  • Ruppersberg JP, Stocker M, Pongs O, Heinemann SH, Frank R, Koenen M (1991) Regulation of fast inactivation of cloned mammalian Ik(A) channels by cysteine oxidation. Nature 352:711–714

    PubMed  CAS  Google Scholar 

  • Saari H, Sorsa T, Lindy O, Suomalainen K, Halinen S, Konttinen YT (1992) Reactive oxygen species as regulators of human neutrophil and fibroblast interstitial collagenases. Int J Tissue Reactions 14:113–120

    CAS  Google Scholar 

  • Salas Vidal E, Lomeli H, Castro Obregon S, Cuervo R, Escalante Alcade D, Covarrubias L (1998) Reactive oxygen species participate in the control of mouse embryonic cell death. Exp Cell Res 238:136–147

    PubMed  CAS  Google Scholar 

  • Saleh D, Ernst P, Lim S, Barnes PJ, Giaid A (1998) Increased formation of the potent oxidant peroxynitrite in the airways of asthmatic patients is associated with induction of nitric oxide synthase-effect of inhaled glucocorticoid. FASEB Journal 12: 929–937

    PubMed  CAS  Google Scholar 

  • Sanchez A, Alvarez AM, Benito M, Fabregat I (1996) Apoptosis induced by transforming growth factor-beta in fetal hepatocyte primary cultures: involvement of reactive oxygen intermediates. J Biol Chem 271:7416–7422

    PubMed  CAS  Google Scholar 

  • Sanchez A, Alvarez AM, Benito M, Fabregat I (1997) Cycloheximide prevents apoptosis, reactive oxygen species production, and glutathione depletion induced by transforming growth factor beta in fetal rat hepatocytes in primary culture. Hepatology 26:935–943

    PubMed  CAS  Google Scholar 

  • Sandoval M, Liu X, Oliver PD, Zhang XJ, Clark DA, Miller MJS (1995) Nitric oxide induces apoptosis in a human colonic epithelial cell line T84. Mediators of Inflammation 4:248–250

    PubMed  CAS  Google Scholar 

  • Sandstrom PA, Buttke TM (1993) Autocrine production of extracellular catalase prevents apoptosis of the human CEM T-cell line in serum-free medium. Proc Natl Acad Sci USA 90:4708–4712

    PubMed  CAS  Google Scholar 

  • Santana P, Pena LA, Haimovitz-Friedman A, Martin S, Green D, Mcloughlin M, Cordon-Cardo C, Schuchman EH, Fuks Z, Kolesnick R (1996) Acid sphin-gomyelinase-deficient human lymphoblasts and mice are defective in radiationinduced apoptosis. Cell 86:189–199

    PubMed  CAS  Google Scholar 

  • Sarafian TA, Bredesen DE (1994) Invited commentary. Is apoptosis mediated by reactive oxygen species? Free Rad Res 21:1–8

    CAS  Google Scholar 

  • Saran M, Bors W (1989) Oxygen radicals as chemical messengers: a hypothesis. Free Rad Res Comm 7:213–220

    CAS  Google Scholar 

  • Saran M, Bors W (1994) Signaling by O2-and NO: how far can either radical, or any specific reaction product transmit a message under in vivo conditions? Chemico-Biological interactions 90:35–45

    PubMed  CAS  Google Scholar 

  • Saran M, Bors W (1997) Radiation chemistry of physiological saline reinvestigated: evidence that chloride-derived intermediates play a key role in cytotoxicity. Radiation Res 147:70–77

    PubMed  CAS  Google Scholar 

  • Saran M, Michel C, Bors W (1990) Reaction of NO with O2<?>-Implication for the action of endothelium-derived relaxing factor (EDRF). Free Rad Res Comm 10:221–226

    CAS  Google Scholar 

  • Saran M, Winkler C, Fellerhoff B (1997) Hydrogen peroxide protects yeast cells from inactivation by ionizing radiation: a radiobiological paradox. Int J Rad Biol 72: 745–750

    PubMed  CAS  Google Scholar 

  • Saran M, Michel C, Bors W (1998) Radical functions in vivo: a critical review of current concepts and hypotheses. Zeitschrift für Naturforschung 53c:210–227

    Google Scholar 

  • Saran M, Beck-Speier I, Fellerhoff B, Bauer G (1999) Phagocytic killing of microorganisms by radical processes: consequences of the reaction of hydroxyl radicals with chloride yielding chlorine atoms. Free Radical Biology and Medicine 26:482–490

    PubMed  CAS  Google Scholar 

  • Sarih M, Souvannavong V, Adam A (1993) Nitric oxide induces macrophage death by apoptosis. BBRC 191:503–508

    PubMed  CAS  Google Scholar 

  • Scaffidi C, Fulda S. Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (Apo/Fas) signaling pathways. EMBO Journal 17:1675–1687

    PubMed  CAS  Google Scholar 

  • Schaefer D, Jürgensmeier J, Bauer G (1995) Catechol interferes with TGF-β-induced elimination of transformed cells by normal cells: implications for the survival of transformed cells during carcinogenesis. Int J Cancer 60:520–526

    PubMed  CAS  Google Scholar 

  • Schiller J, Arnhold J, Arnold K (1995) NMR studies of the action of hypochlorous acid on native pig articular cartilage. Eur J Biochem 233:672–676

    PubMed  CAS  Google Scholar 

  • Schreck R, Riever P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in activation of the NF-kappaB transcription factor and HIV-1. EMBO J 10:2247–2258

    PubMed  CAS  Google Scholar 

  • Schulze-Osthoff K, Beyaert R, Vandevoorde V, Haegeman G, Fiers W (1993) Depletion of the mitochondrial electron transport abrogates the cytotoxic and geneinductive effects of TNF. EMBO J 12:3095–3104

    PubMed  CAS  Google Scholar 

  • Schulze-Osthoff K, Bakker AC, Vanhaesebroeck B, Beyaert R, Jacob WA, Fiers W (1992) Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. J Biol Chem 267:5317–5323

    PubMed  CAS  Google Scholar 

  • Schulze-Osthoff K, Krammer PH, Droege W (1994) Divergent signaling via Apo-1/Fas and the TNF receptor, two homologous molecules involved in physiological cell death. EMBO J 13:4587-1596

    Google Scholar 

  • Schwarz KB (1996) Oxidative stress during viral infection: a review. Free Radic Biol Medic 21:641–649

    CAS  Google Scholar 

  • Sciorati C, Rovere P, Ferrarini M, Heltai S, Manfredi AA, Clementi E (1997) Autocrine nitric oxide modulates CD95-induced apoptosis in gamma-deltaT lymphocytes. J Biol Chem 272:23211–23215

    PubMed  CAS  Google Scholar 

  • Segal AW (1992) Composition and function of the NADPH oxidase of phagocytic cells with particular reference to redox components located within the plasma membrane. In: Cochrane CG, Giombrone MA (eds) Biological oxidants: generation an injurious consequences. San Diego. Academic Press; Cell Mol Mechan Inflamm 4:1-20

    Google Scholar 

  • Seo HG, Takata I, Nakamura M, Tatsumi H, Suzuki K, Fujii J. Taniguchi N (1995) Induction of nitric oxide synthase and concomitant suppression of Superoxide dismutases in experimental colitis in rats. Archives of Bichemistry and Biophysics 324:41–47

    CAS  Google Scholar 

  • Shami PJ, Sauls DL, Weinberg JB (1998) Schedule and concentration-dependent induction of apoptosis in leukemia cells by nitric oxide. Leukemia 12:1461–1466

    PubMed  CAS  Google Scholar 

  • Sharpe MA, Cooper CE (1998) Reactions of nitric oxide with mitochondrial cytochrome c-a novel mechanism for the formation of nitroxyl anion and peroxynitrite. Biochem Journal 332:9–19

    CAS  Google Scholar 

  • Shen YH, Wang XL; Wilcken DEL (1998) Nitric oxide induces and inhibits apoptosis through different pathways. FEBS Letters 433:125–131

    PubMed  CAS  Google Scholar 

  • Shi X, Flynn DC, Porter DW, Leonard SS, Vallyathan V, Casranova V (1997) Efficacy of taurine-based compounds as hydroxyl radical scavengers in silica induced peroxidation. Annals of Clinical and Laboratory Science 27:365–374

    PubMed  CAS  Google Scholar 

  • Slater AFG, Stefan C, Nobel I, van den Dobbelsteen DJ, Orrenius S (1996) Intracellular redox changes during apoptosis. Cell Death and Differentiation 3:57–62

    PubMed  CAS  Google Scholar 

  • Slowik MR, Min W, Ardito T, Karsan A, Kashgarian M, Pober JS (1997) Evidence that tumor necrosis factor triggers apoptosis in human endothelial cells by interleukin-1-converting enzyme-like protease-dependent and-independent pathways. Lab Invest 77:257–267

    PubMed  CAS  Google Scholar 

  • Squadrito GL, Pryor WA (1998) Oxidative chemistry of nitric oxide-the roles of Superoxide, peroxynitrite, and carbon dioxide. Free Radical Biology Medicine 25:392–403

    PubMed  CAS  Google Scholar 

  • Sun Y, Oberley LW (1996) Redox regulation of transcriptional activators. Free Radical Biology Medicine 21:335–348

    PubMed  CAS  Google Scholar 

  • Sundaresan M, Yu ZX, Ferrans VJ, Sulciner DJ, Gutkind JS, Irani K, Goldschmidt Clermont PJ, Finkel T (1996) Regulation of reactive-oxygen-species generation in fibroblasts by racl. Biochemical Journal 318:379–382

    PubMed  CAS  Google Scholar 

  • Susin SA, Zamzami N, Castedo M, Daugas E, Wang HG, Geley S, Fassy F, Reed JC, Kroemer G (1997) The central Executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-l/CD95-and ceramideinduced apoptosis. J Exp Med 186:25–37

    PubMed  CAS  Google Scholar 

  • Suzuki YJ, Forman HJ, Sevanian A (1997a) Oxidants as stimulators of signal transduction. Free Radical Biology and Medicine 22:269–285

    PubMed  CAS  Google Scholar 

  • Suzuki K, Nakamura M, Hatanaka Y, Kayanoki Y, Tatsumi H, Taniguchi N (1997b) Induction of apoptotic cell death in human endothelial cells treated with snake venom: implication of intracellular reactive oxygen species and protective effects of glutathione and Superoxide dismutase. J Biochemistry 122:1260–1264

    CAS  Google Scholar 

  • Sveinbjornsson B, Olsen R, Seternes OM, Seljelid R (1996) Macrophage cytotoxicity against murine Meth a sarcoma involves nitric oxide-mediated apoptosis. BBRC 223:643–649

    PubMed  CAS  Google Scholar 

  • Szabo C (1996) DNA strand breakage and activation of poly-ADP ribosyltransferase: a cytotoxic pathway triggered by peroxynitrite. Free Radical Biol Medicine 21:855–869

    CAS  Google Scholar 

  • Szabo C, Ohshima H (1997) DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide 1:373–385

    PubMed  CAS  Google Scholar 

  • Szabolcs MJ, Ravalli S, Minanov O, Sciacca RR, Michler RE, Cannon PJ (1998) Apoptosis and increased expression of inducible nitric oxide synthase in human allograft rejection. Transplantation 65:804–812

    PubMed  CAS  Google Scholar 

  • Talley AK, Dewhurst S, Perry SW, Dollard SC, Gummuluru S, Fine SM, New D, Epstein LG, Gendelman H, Gelbard HA (1995) Tumor necrosis factor alpha-induced apoptosis in human neuronal cells: protection by the antioxidant N-acetylcysteine and the genes Bcl-2 and crmA. Mol Cell Biol 15:2359–2366

    PubMed  CAS  Google Scholar 

  • Tamatani M, Ogawa S, Niitsu Y, Tohyama M (1998) Involvement of Bcl-2 family and caspase-3-like protease in no-mediated neuronal apoptosis. J Neurochem 71:1588–1596

    PubMed  CAS  Google Scholar 

  • Tenneti L, D’Emilia DM, Lipton SA (1997) Suppression of neuronal apoptosis by Snitrosylation of caspases. Neuroscience Letters 236:139–142

    PubMed  CAS  Google Scholar 

  • Teramoto T, Kiss A, Thorgeirsson SS (1998) Induction of p53 and Bax during TGF-beta-1 initiated apoptosis in rat liver epithelial cells. Biochem Biophys Res Commun 251:56–60

    PubMed  CAS  Google Scholar 

  • Thannickal VJ, Fanburg BL (1995) Activation of an H-2O-2-generating NADH oxidase in human lung fibroblasts by transforming growth factor beta-1. J Biol Chem 270:30334–30338

    PubMed  CAS  Google Scholar 

  • Thannickal VJ, Hassoun PM, White AC, Fanburg BL (1993) Enhanced rate of H, O, release from bovine pulmonary endothelial cells induced by TGF-beta-1. American Journal of Physiology 265:L622–L626

    PubMed  CAS  Google Scholar 

  • Troy CM, Derossi D, Pronchiantz A, Greene LA, Shelanski ML (1996) Downregulation of Cu/Zn Superoxide dismutase leads to cell death via the nitric oxideperoxynitrite pathway. J Neuroscience 16:253–261

    CAS  Google Scholar 

  • Turpaev KT (1998) Nitric oxide in intercellular communication. Mol Biol 32:475–484

    CAS  Google Scholar 

  • Um HD, Orenstein JM, Wahl SM (1996) Fas mediates apoptosis in human monocytes by a reactive oxygen intermediate-dependent pathway. J Immunol 156:3469–3477

    PubMed  CAS  Google Scholar 

  • Umansky V, Bucur M, Schirrmacher V, Rocha M (1997) Activated endothelial cells induced apoptosis in lymphoma cells: role of nitric oxide. Int J Oncol 10:465–471

    PubMed  CAS  Google Scholar 

  • Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM (1996) Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 274:787–789

    PubMed  Google Scholar 

  • Van Den Dobbelsteen DJ, Nobel CSJ, Schlegel J, Cotgreave IA, Orrenius S, Slater AFG (1996) Rapid and specific efflux of reduced glutathione during apoptosis induced by anti-Fas/APO-1 antibody. J Biol Chem 271:15420–15427

    PubMed  Google Scholar 

  • Van Dyke K (1997) The possible role of peroxynitrite in Alzheimer’s disease: a simple hypothesis that could be tested more thoroughly. Medical Hypotheses 48:375–380

    PubMed  Google Scholar 

  • Virag L, Scott GS, Cuzzocrea S, Marmer D, Salzman AL (1998a) Peroxynitrite-induced thymocyte apoptosis-the role of caspases and poly(ADP-ribose) synthetase (PARS) activation. Immunology 94:345–355

    PubMed  CAS  Google Scholar 

  • Virag L, Salzman AL, Szabo C (1998b) Poly (ADP-ribose) synthetase activation mediates mitochondrial injury during oxidant-induced cell death. J Immunol 161:3753–3759

    PubMed  CAS  Google Scholar 

  • Wallach D (1997) Cell death induction by TNF: a matter of self control. TIBS 22: 107–109

    PubMed  CAS  Google Scholar 

  • Walling C (1995) Fenton’s reagent revisited. Accts Chem Res 8:125–131

    Google Scholar 

  • Wang CY, Eshleman JR, Willson JKV, Markovitz S (1995) Both transforming growth factor beta and substrate release are inducers of apoptosis in a human colon adenoma cell line. Cancer Research 55:5101–5105

    PubMed  CAS  Google Scholar 

  • Wardman P, Candeias LP (1996) Fenton chemistry: an introduction. Radiation Res 145:523–531

    PubMed  CAS  Google Scholar 

  • Wehrle I, Jakob A, Höfler P, Bauer G (1994) Transformation of murine fibroblasts by UV light and TGF-β: establishment of an autocrine TGF-ß loop. Int J Oncology 5:1341–1346

    CAS  Google Scholar 

  • Weis M, Kass GEN, Orrenius S (1994) Further characterization of the events involved in mitochondrial Ca-2+ release and pore formation by prooxidants. Biochem Pharm 47:2147–2156

    PubMed  CAS  Google Scholar 

  • Weiler M, Frei K, Groscurth P, Krammer PH, Yonekawa Y, Fontana A (1994) Anti-Fas-APO-1 antibody-mediated apoptosis of cultured human glioma cells: induction and modulation of sensitivity by cytokines. J Clin Invest 94:954–964

    Google Scholar 

  • Winterbourn CC (1995a) Free radical toxicology and antioxidant defence. Clin Exp Pharmacol Physiol 22:877–880

    PubMed  CAS  Google Scholar 

  • Winterbourn CC (1995b) Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicology letters 82/83:969–974

    CAS  Google Scholar 

  • Wittung P, Malmstrom BG (1996) Redox-linked conformational changes in cytochrome c oxidase. FEBS letters 388:47–49

    PubMed  CAS  Google Scholar 

  • Wolin MS (1996) Reactive oxygen species and vascular signal transduction mechanisms. Microcirculation 3:1–17

    PubMed  CAS  Google Scholar 

  • Wong GH, Goeddel DV (1989) Induction of manganous Superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science 242:941–943

    Google Scholar 

  • Wong GHW, Elwell JH, Oberley LW, Goeddel DV (1989) Manganous Superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 58:923–931

    PubMed  CAS  Google Scholar 

  • Worlitzsch D, Herberth G. Ulrich M, Doering D (1998) Catalase, myeloperoxidase and hydrogen peroxide in cystic fibrosis. Europ Respiratory Journal 11:377–383

    CAS  Google Scholar 

  • Xiao BG, Bai XF, Zhang GX, Link H (1997) Transforming growth factor beta-1 induces apoptosis of rat microglia without relation to Bcl-2 oncoprotein expression. Neuroscience Letters 226:71–74

    PubMed  CAS  Google Scholar 

  • Xie K, Huang S, Dong Z, Juang SH, Gutman M, Xie QW, Nathan C, Fidler IH (1995) Transfection with the inducible nitric oxide synthase gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J Exp Med 181:1333–1343

    PubMed  CAS  Google Scholar 

  • Xie K, Huang S, Wang Y, Beltran PJ, Juang SH, Dong Z, Reed JC, Mcdonnel TJ, McConkey DJ, Fidler IJ (1996) Bcl-2 protects cells from cytokine-induced nitricoxide-dependent apoptosis. Cancer Immunology, Immunotherapy 43:109–115

    PubMed  CAS  Google Scholar 

  • Xie K, Wang Y, Huang S, Xu L, Bielenberg D, Salas T, Mcconkey DJ, Jiang W, Fidler IJ (1997) Nitric oxide-mediated apoptosis of K-1735 melanoma cells is associated with downregulation of Bcl-2. Oncogene 15:771–779

    PubMed  CAS  Google Scholar 

  • Xie KP, Fidler IJ (1998) Therapy of cancer metastasis by activation of the inducible nitric oxide synthase. Cancer and Metastasis 17:55–75

    CAS  Google Scholar 

  • Xu Y, Nguyen Q, Lo DC, Czaja MJ (1997) c-myc-dependent cell apoptosis results from oxidative stress and not a deficiency of growth factors. J Cell Physiol 170:192–199

    PubMed  CAS  Google Scholar 

  • Yamakura F, Taka H, Fujimura T, Murayama K (1998) Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 273:14085–14089

    PubMed  CAS  Google Scholar 

  • Yamamoto M, Maehara Y, Sakaguchi Y, Kusumoto T, Ichiyoshi Y, Sugimachi K (1996) Transforming growth factor-beta-l induces apoptosis in gastric cancer cells through a p53-independent pathway. Cancer 77:1628–1633

    PubMed  CAS  Google Scholar 

  • Yan T, Oberley LW, Zhong W, St Clair DK (1996) Manganese-containing Superoxide dismutase overexpression causes phenotypic reversion in SV 40-transformed human lung fibroblasts. Cancer Res 56:2864–2871

    PubMed  CAS  Google Scholar 

  • Yanagihara K, Tsumuraya M (1992) Transforming growth factor beta-1 induces apoptotic cell death in human gastric carcinoma cells. Cancer Research 52:4042–4045

    PubMed  CAS  Google Scholar 

  • Yao Y, Yin D, Jas GS, Kuczera K, Williams TD, Schoneich C, Squier TC (1996) Oxidative modification of a carboxyl-terminal vicinal methionine in calmodulin by hydrogen peroxide inhibits calmodulin-dependent activation of the plasma membrane Ca-ATPase. Biochemistry 35:2767–2787

    PubMed  CAS  Google Scholar 

  • Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin SA, Petit PX, Mignotte B, Kroemer G (1995) Sequential Reduction of mitochondrial Transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 182:367–377

    PubMed  CAS  Google Scholar 

  • Zamzami N, Susin SA, Marchetti P, Hirsch T, Gomez-Monterrey I, Castedo M, Kroemer G (1996) Mitochondrial control of nuclear Apoptosis. J Exp Med 183:1533–1544

    PubMed  CAS  Google Scholar 

  • Zamzami N, Marzo I, Susin SA, Brenner C, Larochette N, Marchetti P, Reed J, Kofler R, Kroemer G (1998a) The thiol crosslinking agent diamide overcomes the apoptosis-inhibitory effect of Bcl-2 by enforcing mitochondrial permeability transition. Oncogene 16:1055–1063

    PubMed  CAS  Google Scholar 

  • Zamzami N, Brenner C, Marzo I, Susan SA, Kroemer G (1998b) Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins. Oncogene 16:2265–2282

    PubMed  CAS  Google Scholar 

  • Zhang HW, Squadrito GL, Pry or WA (1998) The reaction of melatonin with peroxynitrite-formation of melatonin radical cation and absence of stable nitrated products. Biochem. Biophys Res Commun 251:83–87

    PubMed  CAS  Google Scholar 

  • Zhao Z, Francis CE, Welch G, Loscalzo J, Ravid K (1997) Reduced glutathione prevents nitric oxide-induced apoptosis in vascular smooth muscle cells. Biochim Biophys 1359:143–152

    CAS  Google Scholar 

  • Zucker B, Hanusch J, Bauer G (1997a) Glutathione depletion in fibroblasts is the basis for induction of apoptosis by endogenous reactive oxygen species. Cell Death and Differ 4:388–395

    CAS  Google Scholar 

  • Zucker B, Bauer G (1997b) Intercellular induction of apoptosis of transformed cells is modulated by their intracellular glutathione concentration. Int J Oncol 10:141–146

    PubMed  CAS  Google Scholar 

  • Zulueta JJ, Yu FS, Hertig IA, Thannickal VJ, Hassoun PM (1995) Release of hydrogen peroxide in response to hypoxia-reoxygenation: role of an NAD(P)H oxidase-like enzyme in endothelial cell plasma membrane. Am. J. Respir. Cell Mol Biol 12: 41–49

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bauer, G., Dormann, S., Engelmann, I., Schulz, A., Saran, M. (2000). Reactive Oxygen Species and Apoptosis. In: Cameron, R.G., Feuer, G. (eds) Apoptosis and Its Modulation by Drugs. Handbook of Experimental Pharmacology, vol 142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57075-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57075-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63025-5

  • Online ISBN: 978-3-642-57075-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics