Skip to main content

Fast Numerical Solution of the Vector Molodensky Problem

  • Conference paper
IV Hotine-Marussi Symposium on Mathematical Geodesy

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 122))

  • 122 Accesses

Abstract

When standard boundary element methods (BEM) are used in order to solve the linearized vector Molodensky problem we are confronted with two problems: (i) the absence of O (|x|-2) terms in the decay condition is not taken into account, since the single layer ansatz, which is commonly used as representation of the disturbing potential, is of the order O (|x|_1) as x → ∞. This implies that the standard theory of Galerkin BEM is applicable since the injectivity of the integral operator fails; (ii) the N x N stiffness matrix is dense, with N typically of the order 105. Without fast algorithms, which provide suitable approximations to the stiffness matrix by a sparse one with O(N ∙ log8 N), s ≥ 0, non-zero elements, high-resolution global gravity field recovery is not feasible.

We propose solutions to both problems, (i) A proper variational formulation taking the decay condition into account is based on some closed subspace of codimension 3 of L 2 (T). Instead of imposing the constraints directly on the boundary element trial space, we incorporate them into a variational formulation by penalization with a Lagrange multiplier. The conforming discretization yields an augmented linear system of equations of dimension (N+3) x (N+3). The penalty term guarantees the well-posedness of the problem, and gives precise information about the incompatibility of the data, (ii) Since the upper left submatrix of dimension N x N of the augmented system is the stiffness matrix of the standard BEM, the approach allows to use all techniques to generate sparse approximations to the stiffness matrix such as wavelets, fast multipole methods, panel clustering etc. without any modification. We use a combination of panel clustering and fast multipole method in order to solve the augmented linear system of equations in 0(N) operations. The method is based on an approximation of the kernel function of the integral operator by a degenerate kernel in the far field, which is provided by a multipole expansion of the kernel function.

In order to demonstrate the potential of the method we solve a Robin problem on the sphere with a nullspace of dimension 3. For N = 65538 unknowns the matrix assembly takes about 600 s and the solution of the sparse linear system using GMRES without any preconditioning takes about 8 s. 30 iterations are sufficient to make error smaller than the discretization error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Greengard, L. and Rokhlin, V. (1997). A new version of the fast multipole method for the Laplace equation in three dimensions. In Iserles, A., editor, Acta Numerica, volume 6. Cambridge University Press.

    Google Scholar 

  • Hackbusch, W. and Nowak, Z. P. (1989). On the Fast Matrix Multiplication in the Boundary Element Method by Panel Clustering. Numerische Mathematik, 54(4):463–491.

    Article  Google Scholar 

  • Hildebrandt, S. and Wienholtz, E. (1964). Constructive proofs of representation theorems in separable Hibert space. Comm. and Pure Appl. Math., 17:369–373.

    Article  Google Scholar 

  • Lage, C. (1998). Fast evaluation of singular kernel functions by cluster methods. Technical report, Seminar für Angewandte Mathematik, ETH Zürich, CH-8092 Zürich. In preparation.

    Google Scholar 

  • Mikhlin, S.G. and Prößdorf, S. (1986). Singular Integral Operators. Springer, Berlin.

    Book  Google Scholar 

  • Rokhlin, V. (1985). Rapid solution of integral equations of classical potential theory. J. Comput. Phys., 60:187–207.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klees, R., Lage, C., Schwab, C. (2001). Fast Numerical Solution of the Vector Molodensky Problem. In: Benciolini, B. (eds) IV Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56677-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56677-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62574-9

  • Online ISBN: 978-3-642-56677-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics