Skip to main content

Single-Molecule Enzymology

  • Chapter
Single Molecule Spectroscopy

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 67))

Abstract

Viewing a movie of an enzyme molecule made by molecular dynamics simulation, we see incredible details of molecular motions, be they changes of the conformation or actions during a chemical reaction. Molecular dynamics simulations have advanced our understanding of the dynamics of macromolecules in ways that would not be deducible from the static crystal structures [1, 2]. Unfortunately, these “virtual movies” do not run long enough, compared to the time scale of milliseconds to seconds in which most enzymatic reactions take place. In recent years, rapid advances in the patch clamp technique [3], atomic force microscopy [4, 5], optical tweezers [6, 7], and fluorescence microscopy [811] have permitted making single-molecule “movies” in situ at the millisecond to second time scale. These techniques do not have time resolutions as high as that of molecular dynamics simulations, but their single-molecule sensitivities allow probing of conformational motions, which are otherwise masked in ensemble-averaged experiments. Moreover, chemical reactions can now be observed on a single-molecule basis. For example, enzymatic turnovers of a few motor proteins [1217] and a few enzymes [1820] have been monitored in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a review, see C. L. Brooks III, M. Karplus, and B. M. Pettitt, Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics, Advances in Chemical Physics, vol. LXXI (John Wiley & Sons Inc., New York, 1998)

    Google Scholar 

  2. For a review, see J. A. McCammon and S. C. Harvey, Dynamics of Proteins and Nucleic Acids (Cambridge Univ. Press, Cambridge, 1987)

    Book  Google Scholar 

  3. For a review, see Single-Channel Recording, 2nd ed., B. Sakmann and E. Neher (eds.) (Plenum Press, New York, (1995)

    Google Scholar 

  4. M. Radmacher, M. Fritz, H. G. Hansma, and P. K. Hansma, Science 265, 1577–1579 (1994)

    Article  ADS  Google Scholar 

  5. W. A. Rees, R. W. Keller, J. P. Vesenka, and C. Bustamante, Science 260, 1646–1649 (1993)

    Article  ADS  Google Scholar 

  6. A. Ashkin and J. M. Dziedzic, Science 235, 1517–1520 (1987)

    Article  ADS  Google Scholar 

  7. T. T. Perkins, S. R. Quake, D. E. Smith, and S. Chu, Science 264, 822–826 (1994)

    Article  ADS  Google Scholar 

  8. For a recent review, see X. S. Xie and J. K. Trautman, Ann. Rev. Phys. Chem. 59, 441–480 (1998)

    Article  ADS  Google Scholar 

  9. For a recent review, see S. Nie and R. N. Zare, Ann. Rev. Biophys. Biomol. Struct. 26, 567–596 (1997)

    Google Scholar 

  10. For a recent review, see W. E. Moerner and M. Orrit, Science, 283, 1670–1676 (1999)

    Google Scholar 

  11. For a recent review, see S. Weiss, Science, 283, 1676–1683, (1999)

    Article  ADS  Google Scholar 

  12. T. Funatsu, Y. Harada, M. Tokumaga, K. Saito, T. Yanagida, Nature 374, 555–559 (1995)

    Google Scholar 

  13. R. D. Vale, T. Funatsu, D. W. Pierce, L. Romberg, Y. Harada, and T. Yanagida, Nature 380, 451–453 (1996)

    Article  ADS  Google Scholar 

  14. A. Ishijima, H. Kojima, T. Funatsu, M. Tokunaga, H. Higuchi, H. Tanaka, and T. Yanagida, Cell 92, 161–171 (1998)

    Article  Google Scholar 

  15. H. Noji, R. Yasuda, M. Yoshida, and K. Kinosita, Nature 386, 299–302 (1997)

    Article  ADS  Google Scholar 

  16. R. Yasuda, H. Moji, K. Kinoshita, and M. Yoshida, Cell 93, 1117–1124 (1997)

    Article  Google Scholar 

  17. M. J. Schnitzer, S. M. Block, Nature 388, 386–390 (1997)

    Article  ADS  Google Scholar 

  18. H. P. Lu, L. Xun, and X. S. Xie, Science, 282, 1877–1882 (1998)

    Article  ADS  Google Scholar 

  19. T. Ha, A. Y. Ting, J. Liang, W. B. Caldwell, A. A. Deniz, D. S. Chemla, P. G. Schultz, and S. Weiss, Proc. Natl. Acad. Sci. USA 96, 893–898 (1999)

    Google Scholar 

  20. L. Edman, Z. Foldes-Papp, S. Wennmalm, and R. Rigler, Chem. Phys. 247, 11–22 (1999)

    Article  ADS  Google Scholar 

  21. D. Magde, E. Elson, and W. W. Webb, Phys. Rev. Lett. 29, 705–708 (1972)

    Article  ADS  Google Scholar 

  22. G. Feher and M. Weissman, Proc. Nat. Acad. Sci. USA 70, 870–875 (1973)

    Article  ADS  Google Scholar 

  23. For a recent review, see S. Maiti, U. Haupts, and W. W. Webb, Proc. Natl. Acad. Sci. USA 94, 11753–11757 (1997)

    Article  ADS  Google Scholar 

  24. M. Eigen and R. Rigler, Proc. Natl. Acad. Sci. USA 91, 5740–5747 (1994)

    Article  ADS  Google Scholar 

  25. R. Zwanzig, Acc. Chem. Res. 23, 148–152 (1990)

    Article  Google Scholar 

  26. Q. F. Xue and E. S. Yeung, Nature 373, 681–683 (1995)

    Article  ADS  Google Scholar 

  27. D. B. Craig, E. A. Arriaga, J. C. Y. Wong, H. Lu, and N. J. Dovichi, J. Am. Chem. Soc. 118, 5245–5253 (1996)

    Article  Google Scholar 

  28. J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, Science 272, 255–258 (1996)

    Article  ADS  Google Scholar 

  29. H. P. Lu and X. S. Xie, Nature 385, 143–146 (1997)

    Article  ADS  Google Scholar 

  30. X. S. Xie and R. C. Dunn, Science 265, 361–364 (1994)

    Article  ADS  Google Scholar 

  31. M. T. Ha, T. Enderle, D. S. Chemla, P. R. Selvin, and S. Weiss, Phys. Rev. Lett. 77, 3979–3982 (1996)

    Article  ADS  Google Scholar 

  32. E. J. G. Peterman, S. Brasselet, and W. E. Moerner, J. Phys. Chem. A 103(49), 10553–10560 (1999)

    Article  Google Scholar 

  33. T. Palmer, Understanding Enzymes, 4th ed. (Prentice Hall, New York, 1991) Chap. 9

    Google Scholar 

  34. M. J. Schnitzer, S. M. Block, “Protein kinesis: The dynamics of protein trafficking and stability,” Cold Spring Harbor Symp. Quant. Biol. 60, 793–802 (1995)

    Article  Google Scholar 

  35. J. Dapprich, U. Mets, W. Simm, M. Eigen, and R. Rigler, Exp. Tech. Phys. 41, 259–264, (1995)

    Google Scholar 

  36. C. Eggeling, J. R. Fries, L. Brand, R. Gunther, and C. A. M. Seidel, Proc. Natl. Acad. USA 95, 1556–1561 (1998)

    Article  ADS  Google Scholar 

  37. Y. Jia, A. Sytnik, L. Li, S. Vladimarov, B. S. Coopeman, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 94, 7932–7936 (1997)

    Article  ADS  Google Scholar 

  38. E. Geva and J. L. Skinner, Chem. Phys. Lett. 288, 225–229 (1998)

    Article  ADS  Google Scholar 

  39. G. Schenter, H. P. Lu, and X. S. Xie, J. Phys. Chem. A 103, 10477–10488 (1999)

    Article  Google Scholar 

  40. N. Agmon and J. J. Hopfield, J. Chem. Phys. 78, 6947–6959 (1983)

    Article  ADS  Google Scholar 

  41. J. Wang and P. Wolynes, J. Chem. Phys. 110, 4812 (1998)

    Article  ADS  Google Scholar 

  42. J. Wang and P. Wolynes, Phys. Rev. Lett. 74, 4317–4320 (1995)

    Article  ADS  Google Scholar 

  43. J. R. Knowles, Nature 350, 121–124 (1991)

    Article  ADS  Google Scholar 

  44. W. R. Cannon, S. F. Singleton, and S. J. Benkovic, Nat. Struct. Biol. 3, 821–833 (1996)

    Article  Google Scholar 

  45. M. Karplus, J. Phys. Chem. B 104, 3721–3743 (2000)

    Article  Google Scholar 

  46. J. A. McCammon, Simplicity and Complexity in Proteins and Nucleic Acids, H. Frauenfelder, J. Deisenhofer, and P. Wolynes (eds) (Dahlem Univ. Press, Berlin, 1999)

    Google Scholar 

  47. W. N. Lipscomb, Acc. Chem. Res. 15, 232 (1982)

    Article  Google Scholar 

  48. S. J. Hagen and W. A. Eaton, J. Chem. Phys. 104, 3395–3398 (1996)

    Article  ADS  Google Scholar 

  49. H. Frauenfelder, F. Parak, and R. D. Young, Ann. Rev. Biophys. Chem. 17, 451–479 (1988)

    Article  Google Scholar 

  50. H. Frauenfelder, S. G. Sligar, and P. G. Wolynes, Science 254, 1598–1603 (1991)

    Article  ADS  Google Scholar 

  51. K. E. Neet and G. R. Anislie, Method Enzym. 64, 192–226 (1980)

    Article  Google Scholar 

  52. C. Frieden, Ann. Rev. Biochem. 48, 471–489 (1979)

    Article  Google Scholar 

  53. J. Ricard, J. Meunier, and J. Buc, Eur. J. Biochem. 49, 195–208 (1974)

    Article  Google Scholar 

  54. P. Stange, A. S. Milhailov, and B. Hess, J. Phys. Chem. 102, 6273–6289 (1998)

    Article  Google Scholar 

  55. D. E. Koshland, Nat. Med. 4, xii–xiv (1998)

    Google Scholar 

  56. E. J. Sanchez, L. Novotny, and X. S. Xie, Phys. Rev. Lett. 82, 4014 (1999)

    Article  ADS  Google Scholar 

  57. A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999)

    Article  ADS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xie, X.S., Lu, H.P. (2001). Single-Molecule Enzymology. In: Single Molecule Spectroscopy. Springer Series in Chemical Physics, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56544-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56544-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62702-6

  • Online ISBN: 978-3-642-56544-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics