Skip to main content

Dusty Rings and Circumplanetary Dust: Observations and Simple Physics

  • Chapter
Interplanetary Dust

Abstract

Each giant planet is encircled by planetary rings, usually composed of particles centimeters to meters in radius, but each system also contains regions where much smaller dust grains predominate. This chapter summarizes the techniques used to determine the properties of circumplanetary material, and then gives a precis of the known characteristics of circumplanetary rings (with emphasis on tenuous structures) and dust grains, before describing some of the physics and orbital dynamics relevant to them. Jupiter’ s dusty rings (as discovered by the Voyager and Galileo spacecraft) have three components: i) a radially confined and vertically extended halo which rises abruptly, probably due to an electromagnetic resonance; ii) a 6500-km-wide flattened main ring that shows patchiness and whose outer edge is bounded by the orbit of the satellite Adrastea; and iii) a pair of exterior gossamer rings that seem to be derived from the satellites Amalthea and Thebe whose orbits circumscribe these rings. In addition, small particles are strewn throughout the inner Jovian magnetosphere, especially near the paths of the Galilean moons, and the jovian system seems to eject very tiny particles at hypervelocities to interplanetary space. Saturn’ s circum planetary dust is unusual in the size distribution of its various rings: the broad and diffuse E ring seems to be mainly I-micron grains whereas the narrow F and G rings have quite steep size distributions, indicating the predominance of very small grains. Surprisingly little dust resides in the main Saturnian rings, except in the localized spokes. Dust is interspersed between the narrow classical Uranian rings, forming a sheet that is punctuated by narrow bands and gaps. Neptune’ s system contains at least some grains that lie well off the planet’s equatorial plane, perhaps as a result of Neptune’s highly tilted and offset magnetic field. The debris lost off the small moons Phobos and Deimos is believed to produce very tenuous dust tori around Mars. Complex orbital histories for circum planetary grains result from conservative and non-conservative forces (gravity, radiation pressure and electromagnetism); the latter become most important for smaller particles and may even lead to ejection or planetary impact. Orbital resonance phenomena, several of which are unique to circumplanetary dust, seem to govern the distribution of grains orbiting planets. Circumplanetary dust is short-lived in a cosmic sense, owing to erosion through sputtering by the surrounding magnetospheric plasma and orbital loss due to various evolution mechanisms. These brief lifetimes imply continual regeneration to supply new material. Circumplanetary dust is often found in intimate relation with embedded small moonlets since it can be generated through energetic impacts into such bodies but is also absorbed by them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acuña, M. H., and Ness, N. F. 1976. The complex main magnetic field of Jupiter. J. Geophys. Res., 81, pp. 2917–2922.

    ADS  Google Scholar 

  • Aubier, M. G., Meyer-Vernet, N., and Pedersen, B. M. 1983. Shot noise from grain and particle impacts in Saturn’s ring plane. Geophys. Res. Lett., 10, pp. 5–8.

    ADS  Google Scholar 

  • Baguhl, M., Grün, E., Linkert, G. Linkert, D., and Siddique, N. 1993. Identification of “small” dust impacts in the Ulysses dust detector data. Planet. Space Sci., 41, pp. 1085–1098.

    ADS  Google Scholar 

  • Baguhl, M., Grün, E., Hamilton, D. P., Linkert, G., Riemann, R., Staubach, P., and Zook, H. A. 1994. Galileo dust. Space Sci. Rev., 72, pp. 471–476.

    ADS  Google Scholar 

  • Baguhl, M., Hamilton, D. P., Grün, E., Dermott, S. F., Fechtig, H., Hanner, M. S., Kissel, J., Lindblad, B.-A., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A. M., Morfill, G. E., Polanskey, C., Riemann, R., Schwehm, G., Staubach, P., and Zook, H. A. 1995. Dust measurements at high ecliptic latitudes. Science, 268, pp. 1016–1019.

    ADS  Google Scholar 

  • Banaszkiewicz, M., and Krivov, A. V. 1997. Hyperion as a dust source in the Saturn system. Icarus, 129, pp. 289–303.

    ADS  Google Scholar 

  • Bauer, J., Lissauer, J. J., and Simon, M. 1997. Edge-on observations of Saturn’s E and G Rings in the near-IR. Icarus, 125, pp. 440–445.

    ADS  Google Scholar 

  • Bliokh, P. V., Sinitsin, V., and Yaroshenko, V. 1995. Dusty and Self-Gravitational Plasmas in Space. (Dordrecht, Boston).

    Google Scholar 

  • Bosh, A. S., and Rivkin, A. S. 1996. Observations of Saturn’s inner satellites during the May 1995 ring-plane crossing. Science, 272, pp. 518–521.

    ADS  Google Scholar 

  • Bosh, A. S., Olkin, C. B., French, R. G., and Nicholson, P. D. 2001. Saturn’s F ring: Kinematics and particle sizes from stellar occultation studies. Icarus, submitted.

    Google Scholar 

  • Broadfoot, A. L., Herbert, F., Holberg, J. B., Hunten, D. M., Kumar, S., B., Sandel, R., Shemansky, D. E., Smith, G. R., Yelle, R. V., Strobel, D. F., Moos, H. W., Donahue, T. M., Atreya, S. K., Bertaux, J. L., Blamont, J. E., McConnell, J. C., Dessler, A. J., Linick, S., and Springer, R. 1986. Ultraviolet Spectrometer observations of Uranus. Science, 233, pp. 74–79.

    ADS  Google Scholar 

  • Broadfoot, A. L., Atreya, S. K., Bertaux, J. L., Blamont, J. E., Dessler, A. J., Donahue, T. M., Forrester, W. T., Hall, D. T., Herbert, F., Holberg, J. B., Hunten, D. M., Krasnopolsky, V. A., Linick, S., Lunine, J. I., McConnell, J. C., Moos, H. W., Sandel, B. R., Schneider, N. M., Shemansky, D. E., Smith, G. R., Strobel, D. F., and Yelle, R. V. 1989. Ultraviolet Spectrometer observations of Neptune and Triton. Science, 246, pp. 1459–1466.

    ADS  Google Scholar 

  • Buratti, B. J., Mosher, J. A., Nicholson, P. D., McGhee C. A., and French, R. G. 1998. Near-infrared photometry of the Saturnian satellites during ring plane crossing. Icarus, 136, pp. 223–231.

    ADS  Google Scholar 

  • Burns, J. A. 1976. An elementary derivation of the perturbation equations of celestial mechanics. Am. Jnl. Phys., 44, pp. 944–949 (Erratum: 45, 1230).

    Google Scholar 

  • Burns, J. A. 1991. Physical processes on circumplanetary dust. In The Origin and Evolution of Interplanetary Dust, eds. A.-C. Levasseur-Regourd and H. Hasegawa (Dordrecht: Kluwer Academic Publisher), pp. 341–348.

    Google Scholar 

  • Burns, J. A. 1999. Planetary rings. In The New Solar System, 4th ed., eds. J. K. Beatty, C. C. Petersen and A. Chaikin (Cambridge MA: Sky Publishing), pp. 221–240.

    Google Scholar 

  • Burns, J. A., and Gladman, B. J. 1998. Dynamically depleted zones near Saturn for Cassini’s safe passage. Planet. Space Sci., 46, pp. 1401–1407.

    ADS  Google Scholar 

  • Burns, J. A., and Schaffer, L. 1989. Orbital evolution of circumplanetary dust by resonant charge variations. Nature, 337, pp. 340–343.

    ADS  Google Scholar 

  • Burns, J. A., Lamy, P. L., and Soter, S. 1979. Radiation forces on small particles in the solar system. Icarus, 40, pp. 1–48.

    ADS  Google Scholar 

  • Burns, J. A., Showalter, M. R., Cuzzi, J. N., and Pollack, J. B. 1980. Physical processes in Jupiter’s ring: Clues for an origin by Jove! Icarus, 44, pp. 339–360.

    ADS  Google Scholar 

  • Burns, J. A., Cuzzi, J. N., and Showalter, M. R. 1983. Discovery of gossamer rings. Bull. Amer. Astron. Soc., 15, pp. 1013–1014.

    ADS  Google Scholar 

  • Burns, J. A., Showalter, M. R., and Morfill, G. 1984. The ethereal rings of Jupiter and Saturn. In Planetary Rings, eds. R. Greenberg and A. Brahic (Tucson: University of Arizona Press), pp. 200–272.

    Google Scholar 

  • Burns, J. A., Schaffer, L., Greenberg, R. J., and Showalter, M. R. 1985. Lorentz resonances and the structure of Jupiter’s rings. Nature, 316, pp. 115–119

    ADS  Google Scholar 

  • Burns, J. A., Hamilton, D. P., Mignard, F., and Soter, S. 1996. The contamination of Iapetus by Phoebe dust. In Physics, Chemistry and Dynamics of Interplanetary Dust, eds. B. Å. S. Gustafson and M. S. Hanner (Dordrecht: Kluwer), pp. 179–182.

    Google Scholar 

  • Burns, J. A., Showalter, M. R., Hamilton, D. P., Nicholson, P. D., de Pater, I., Ockert-Bell, M., and Thomas, P. C. 1999. The formation of Jupiter’s faint rings. Science, 284, pp. 1146–1150.

    ADS  Google Scholar 

  • Canup, R. M., and Esposito, L. W. 1995. Accretion in the Roche zone. Coexistence of rings and ring moons. Icarus, 113, pp. 331–352.

    ADS  Google Scholar 

  • Canup, R. M., and Esposito, L. W. 1997. Evolution of the G ring and the population of macroscopic ring particles. Icarus, 126, pp. 28–41.

    ADS  Google Scholar 

  • Chamberlain, J. W. 1979. Depletion of satellite atoms in a collisionless exosphere by radiation pressure. Icarus, 39, pp. 286–294.

    ADS  Google Scholar 

  • Cheng, A. F., Haff, P. K., Johnson, R. E., and Lanzerotti, L. J. 1986. Interactions of planetary magnetospheres with icy satellite surfaces. In Planetary Satellites, eds. J. A. Burns and M. S. Matthews (Tucson: University of Arizona Press), pp. 403–430.

    Google Scholar 

  • Colwell, J. E., and Esposito, L. W. 1990a. A numerical model of the Uranian dust rings. Icarus, 86, pp. 530–560.

    ADS  Google Scholar 

  • Colwell, J. E., and Esposito, L. W. 1990b. A model of dust production in the Neptune ring system. GRL., 17, pp. 1741–1744.

    ADS  Google Scholar 

  • Colwell, J. E., and Esposito, L. W. 1992. Origin of the rings of Uranus and Neptune. I. Statistics of satellite disruptions. JGR, 97, pp. 10,227–10,241.

    ADS  Google Scholar 

  • Colwell, J. E., and Esposito, L. W. 1993. Origin of the rings of Uranus and Neptune. 2. Initial distribution of disrupted satellite fragments. JGR, 98, pp. 7387–7401.

    ADS  Google Scholar 

  • Colwell, J. E., and Horányi, M. 1996. Magnetospheric effects on micrometeoroid fluxes. JGR-Planets, 101, pp. 2169–2175.

    Google Scholar 

  • Colwell, J. E., and 12 colleagues 1990. Voyager photopolarimeter observations of Uranian ring occultations. Icarus, 83, pp. 102–125.

    ADS  Google Scholar 

  • Colwell, J. E., Horányi, M., and Grün, E. 1998. Capture of interplanetary and interstellar dust by the Jovian magnetosphere. Science, 280, pp. 88–91.

    ADS  Google Scholar 

  • Connerney, J. E. P. 1993. Magnetic fields of the outer planets. J. Geophys. Res., 98, pp. 18,659–18,679.

    ADS  Google Scholar 

  • Connerney, J. E. P., Acuna, M. H., and Ness, N. F. 1996. Octupole model of Jupiter’s magnetic field from Ulysses observations. J. Geophys. Res., 101, pp. 27,453–27,458.

    ADS  Google Scholar 

  • Cooke, M. L. 1991. Saturn’s Rings: Radial Variation in the Keeler Gap and C Ring Photometry. Ph. D. dissertation (Cornell University), xii + 206 pp.

    Google Scholar 

  • Cuzzi, J. N. 1985. Rings of Uranus: Not so thick, not so black. Icarus, 63, pp. 312–316.

    ADS  Google Scholar 

  • Cuzzi, J. N., and Burns, J. A. 1988. Charged particle depletion surrounding Saturn’s F Ring: Evidence for a moonlet belt? Icarus, 74, pp. 284–324.

    ADS  Google Scholar 

  • Cuzzi, J. N., and Estrada, P. R. 1998. Compositional evolution of Saturn’s rings due to meteoroid bombardment. Icarus, 132, pp. 1–35.

    ADS  Google Scholar 

  • Cuzzi, J. N., and Rappaport, N. 1996. Report to Cassini Project on Possible Ring Hazard. JPL internal document.

    Google Scholar 

  • Cuzzi, J. N., Lissauer, J. J., Esposito, L. W., Holberg, J. B., Marouf, E. A., Tyler, G. L., and Boischot, A. 1984. Saturn’s rings: Properties and processes. In Planetary Rings, eds. R. J. Greenberg and A. Brahic (Tucson: University of Arizona Press), pp. 73–199.

    Google Scholar 

  • Danby, J. M. A. 1988. Fundamentals of Celestial Mechanics, (2nd ed.), (Richmond, VA: Willmann-Bell).

    Google Scholar 

  • de Pater, I., Showalter, M. R., Lissauer, J. J., and Graham, J. R. 1996. Keck infrared observations of Saturn’s E and G Rings during Earth’s 1995 ring plane crossings. Icarus, 121, pp. 195–198.

    ADS  Google Scholar 

  • de Pater, I., Showalter, M. R., Burns, J. A., Nicholson, P. D., Liu, M., Hamilton, D. P., and Graham, J. R. 1999. Keck infrared observations of Jupiter’s ring system near Earth’s 1997 ring-plane crossing. Icarus, 138, pp. 214–223.

    ADS  Google Scholar 

  • Dermott, S. F. 1981. The braided F ring of Saturn. Nature, 290, pp. 454–457.

    ADS  Google Scholar 

  • Dohnanyi, J. S. 1972. Interplanetary objects in review: Statistics of their masses and dynamics. Icarus, 17, pp. 1–48.

    ADS  Google Scholar 

  • Dones, L., Cuzzi, J. N., and Showalter, M. R 1993. Voyager photometry of Saturn’s A Ring. Icarus, 105, pp. 184–215.

    ADS  Google Scholar 

  • Doyle, L. R, and Grün, E. 1990. Radiative transfer modeling constraints on the size of Saturn’s spoke particles. Icarus, 85, pp. 168–190.

    ADS  Google Scholar 

  • Doyle, L. R, Dones, L., and Cuzzi, J. N. 1989. Radiative transfer modeling of Saturn’s outer B Ring. Icarus, 80, pp. 104–135.

    ADS  Google Scholar 

  • Dubinin, E. M., Lundin, R., Pissarenko, N. F., Barabash, S. V., Zakaharov, A. V., Koskinen, H., Schwingenshuh, K., and Yeroshenko, Ye. G. 1990. Indirect evidence for a dust/gas torus along the Phobos orbit. CRL, 17, pp. 861–864.

    Google Scholar 

  • Dumas, C., Terrile, R J., Smith, B. A., Schneider, G., and Becklin, E. E. 1999. Stability of Neptune’s ring arcs in question. Nature, 400, pp. 733–735.

    ADS  Google Scholar 

  • Durda, D. D., and Dermott, S. F. 1997. The collisional evolution of the asteroid belt and its contribution to the zodiacal cloud. Icarus, 130, pp. 140–164.

    ADS  Google Scholar 

  • Elliot, J., and Kerr, R 1985. Rings: Discoveries from Calileo to Voyager. (Cambridge, Mass.: MIT Press).

    Google Scholar 

  • Elliot, J. L., Dunham, E. W., and Mink, D. J. 1977. The rings of Uranus. Nature, 267, pp. 328–330.

    ADS  Google Scholar 

  • Elliot, J. L., Bosh, A. S., Cooke, M. L., Bless, R. C., Nelson, M. J., Percival, J. W., Taylor, M. J., Dolan, J. F., Robinson, E. L., and van Citters, G. W. 1993. An occultation of Saturn’s rings on 1991 October 2-3 observed with the Hubble Space Telescope. Astron. J., 106, pp. 2544–2572, and p. 2598.

    ADS  Google Scholar 

  • Eplee, R. E., Jr., and Smith, B. A. 1984. Spokes in Saturn’s rings: Dynamical and reflectance properties. Icarus, 59, pp. 188–198.

    ADS  Google Scholar 

  • Eplee, R. E., Jr., and Smith, B. A. 1985. Radial growth of an extended spoke in Saturn’s B Ring. Icarus, 63, pp. 304–311.

    ADS  Google Scholar 

  • Esposito, L. W., Cuzzi, J. N., Holberg, J. B., Marouf, E. A., Tyler, G. L. and Porco, C. 1984. Saturn’s rings: Structure, dynamics and particle properties. In Saturn, eds. T. Gehrels and M. S. Matthews (Tucson: University of Arizona Press), pp. 463–545.

    Google Scholar 

  • Esposito, L. W., Brahic, A., Burns, J. A., and Marouf, E. A. 1991. Particle properties and processes in Uranus’ rings. In Uranus, eds. J. T. Bergstralh, E. D. Miner, and M. S. Matthews (Tucson: University of Arizona Press), pp. 410–465.

    Google Scholar 

  • Farinella, P., Gonczi, R, Froeschlé, Ch., and Froeschlé, C. 1993. The injection of asteroid fragments into resonances. Icarus, 101, pp. 174–187.

    ADS  Google Scholar 

  • Feibelman, W. A. 1967. Concerning the “D” Ring of Saturn. Nature, 214, pp. 793-794.

    Google Scholar 

  • Ferrari, C., and Brahic, A. 1994. Azimuthal brightness asymmetries in planetary rings I. Neptune’s arcs and narrow rings. Icarus, 111, pp. 193–210.

    ADS  Google Scholar 

  • Fillius, R W., McIlwain, C. E., and Mogro-Campero, A. 1975. Radiation belts of Jupiter: A second look. Science, 188, pp. 465–467.

    ADS  Google Scholar 

  • Fischer, H. M., Pehlke, E., Wibberenz, G., Lanzerotti, L. J., and Mihalov, J. D. 1996. High-energy charged particles in the innermost jovian magnetosphere. Science, 272, pp. 856–858.

    ADS  Google Scholar 

  • French, R. G., Nicholson, P. D., Porco, C. C., and Marouf, E. A. 1991. Dynamics and structure of the Uranian rings. In Uranus, eds. J. T. Bergstralh, E. D. Miner, and M. S. Matthews (Tucson: University of Arizona Press), pp. 327–409.

    Google Scholar 

  • French, R. G., Nicholson, P. D., Cooke, M. L., Elliot, J. L., Matthews, K., Perkovic, O., Tollestrup, E., Harvey, P., Chanover, N. J., Clark, M. A., Dunham, E. W., Forrest, W., Harrington, J., Pipher, J., Brahic, A., Grenier, I., Roques, F., and Arndt, M. 1993. Geometry of the Saturn system from the 3 July 1989 occultation of 28 Sgr and Voyager observations. Icarus, 103, pp. 163–214.

    ADS  Google Scholar 

  • French, R. G., Roques, F., Nicholson, P. D., Mc Ghee, C. A., Bouchet, P., Maene, S. A., Mason, E. C., Matthews, K., and Mosqueira, I. 1996. Earth-based detection of Uranus’ lambda ring. Icarus, 119, pp. 269–284.

    ADS  Google Scholar 

  • French, R. G., Cuzzi, J., Danos, R., Dones, L., and Lissauer, J. 1998. Hubble Space Telescope observations of spokes in Saturn’s rings. Abstract from the International Symposium: “The Jovian system after Galileo. The Saturnian system before Cassini-Huygens”, Nantes, France, 11-15 May 1998. p. 36.

    Google Scholar 

  • French, R. G., McGhee, C. A., Nicholson, P. D., Dones, L., and Lissauer, J. 1999. Saturn’s wayward shepherds: Pandora and Prometheus. BAAS, 31, p. 1228

    ADS  Google Scholar 

  • Fujiwara, A., Cerroni, P., Davis, D., Ryan, E., diMartino, M., Holsapple, K., and Housen, K. 1989. Experiments and scaling laws for catastrophic collisions. In Asteroids II, eds. R P. Binzel, T. Gehrels and M. S. Matthews (Univ. Arizona Press), pp. 240–265.

    Google Scholar 

  • Gehrels, T., Baker, R. L., Beshore, E., Blenman, C., Burke, J. J., Castillo, N. D., DaCosta, B., Degewij, J., Doose, L. R, Fountain, J. W., Gotobed, J., KenKnight, C. E., Kingston, R, McLaughlin, G., McMillan, R, Murphy, R., Smith, P. H., Stoll, C. P., Strickland, R. N., Tomasko, M. G., Wijesinghe, M. P., Coffeen, D. L., and Esposito, L. 1980. Imaging Photopolarimeter on Pioneer Saturn. Science, 207, pp. 434–439.

    ADS  Google Scholar 

  • Goertz, C. K. 1989. Dusty plasmas in the solar system. Rev. Geophys., 27, pp. 271–292.

    ADS  Google Scholar 

  • Goertz, C. K., and Morfill, G. E. 1983. A model for the formation of spokes in Saturn’s ring. Icarus, 53, pp. 219–229.

    ADS  Google Scholar 

  • Goertz, C. K., and Morfill, G. E. 1988. A new instability of Saturn’s ring. Icarus, 74, pp. 325–330.

    ADS  Google Scholar 

  • Goertz, C. K., Morfill, G. E., Ip, W.-H., Grün, E., and Havnes, O. 1986. Electromagnetic angular momentum transport in Saturn’s ring. Nature, 320, pp. 141–143.

    ADS  Google Scholar 

  • Goertz, C. K., Shan, L., and Havnes, O. 1988. Electrostatic forces in planetary rings. Geophys. Res. Ltrs., 15, pp. 84–87.

    ADS  Google Scholar 

  • Goldreich, P., and Tremaine, S. 1979. Towards a theory for the Uranian rings. Nature, 277, pp. 97–99.

    ADS  Google Scholar 

  • Goldreich, P., and Tremaine, S. 1982. The dynamics of planetary rings. Ann. Rev. Astron. Astrophys., 20, pp. 249–283.

    ADS  Google Scholar 

  • Gradie, J., Thomas, P., and Veverka, J. 1980. The surface composition of Amalthea. Icarus, 44, pp. 373–387.

    ADS  Google Scholar 

  • Graps, A. L., and Lane, A. L. 1986. Voyager 2 photopolarimeter experiment: Evidence for tenuous outer ring material at Saturn. Icarus, 67, pp. 205–210.

    ADS  Google Scholar 

  • Graps, A. L., Lane, A. L., Horn, L. J., and Simmons, K. E. 1984. Evidence for material between Saturn’s A and F Rings from the Voyager 2 photopolarimeter experiment. Icarus, 60, pp. 409–415.

    ADS  Google Scholar 

  • Graps, A. L., Grün, E., Svedhem, H., Krü;ger, H., Horänyi, M., Heck, A., and Lammers, S. 2000. 10 as a source of the jovian dust streams. Nature, 405, pp. 48–50.

    ADS  Google Scholar 

  • Grün, E., Morfill, G. E., Terrile, R J., Johnson, T. V., and Schwehm, G. 1983. The evolution of spokes in Saturn’s B Ring. Icarus, 54, pp. 227–252.

    ADS  Google Scholar 

  • Grün, E., Morfill, G. E., and Mendis, D. A. 1984. Dust-magnetosphere interactions. In Planetary Rings, eds. R. J. Greenberg and A. Brahic (Tucson: University of Arizona Press), pp. 275–332.

    Google Scholar 

  • Grün, E., Goertz, C. K., Morfill G. E., and Havnes, O. 1992a. Statistics of Saturn’s spokes. Icarus, 99, pp. 191–201.

    ADS  Google Scholar 

  • Grün, E., Baguhl, M., Fechtig, H., Hanner, M. S., Kissel, J., Lindblad, B. A., Linkert, D., Linkert, G., Mann, I. B., McDonnell, J. A. M., Morfill, G. E., Polanskey, C., Riemann, R, Schwehm, G., Siddique, N., and Zook, H. A. 1992b. Galileo and Ulysses dust measurements: From Venus to Jupiter. Geophys. Res. Let., 19, pp. 1311–1314.

    ADS  Google Scholar 

  • Grün, E., Fechtig, H., Hanner, M. S., Kissel, J., Lindblad, B.-A., Linkert, D., Maas, D., Morfill, G. E., and Zook, H. A. 1992c. The Galileo dust detector. Space Sci. Rev., 60, pp. 317–340.

    ADS  Google Scholar 

  • Grün, E., Zook, H. A., Baguhl, M., Balogh, A., Bame, S. J., Fechtig, H., Forsyth, R, Hanner, M. S., Horänyi, M., Kissel, J., Lindblad, B.-A., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A. M., Morfill, G. E., Phillips, J. L., Polanskey, C., Schwehm, G., Siddique, N., Staubach, P., Svestka, J., and Taylor, A. 1993. Discovery of jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature, 362, pp. 428–430.

    ADS  Google Scholar 

  • Grün, E., Baguhl, M., Hamilton, D. P., Riemann, R, Zook, H. A., Dermott, S. F., Fechtig, H., Gustafson, B. A., Hanner, M. S., Horänyi, M., Khurana, K., Kissel, J., Kivelson, M., Lindblad, B.-A., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A. M., Morfill, G. E., Polanskey, C., Schwehm, G., and Srama, R 1996a. Constraints from Galileo observations on the origin of jovian dust streams. Nature, 381, pp. 395–398.

    ADS  Google Scholar 

  • Grün, E., Hamilton, D. P., Riemann, R, Dermott, S. F., Fechtig, H., Gustafson, B. A., Hanner, M. S., Heck, A., Horänyi, M., Kissel, J., Krü;ger, H., Lindblad, B.-A., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A. M., Morfill, G. E., Polanskey, C., Schwehm, G., Srama, R, and Zook, H. A. 1996b. Dust measurements during Galileo’s approach to Jupiter and 10 encounter. Science, 274, pp. 399–40l.

    ADS  Google Scholar 

  • Grün, E., Krü;ger, H., Dermott, S., Fechtig, H., Graps, A. L., Gustafson, B. A., Hamilton, D. P., Hanner, M. S., Heck, A., Horänyi, M., Kissel, J., Lindblad, B.A., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A. M., Morfill, G. E., Polanskey, C., Schwehm, G., Srama, R., and Zook, H. A. 1997. Dust measurements in the Jovian magnetosphere. GRL, 24, pp. 2171–2174.

    ADS  Google Scholar 

  • Grün, E., Krü;ger, H., Graps, A. L., Hamilton, D. P., Heck, A., Linkert, G., Zook, H. A., Dermott, S., Fechtig, H., Gustafson, B. A., Hanner, M. S., Horányi, M., Kissel, J., Lindblad, B. A., Linkert, D., Mann, I., McDonnell, J. A. M., Morfill, G. E., Polanskey, C., Schwehm G., and Srama, R. 1998. Galileo observes electromagnetically coupled dust in the jovian magnetosphere. JGR, 103, pp. 20011–20022.

    ADS  Google Scholar 

  • Guérin, P. 1973. Les anneaux de Saturne en 1969. Etude morphologique et photometrique 1. Obtention et depouillement des photographies. Icarus, 19, pp. 202–211.

    ADS  Google Scholar 

  • Gurnett, D. A., Grün, E., Gallagher, D., Kurth, W. S., and Scarf, F. L. 1983. Micron-sized particles detected near Saturn by the Voyager Plasma Wave instrument. Icarus, 53, pp. 236–254.

    ADS  Google Scholar 

  • Gurnett, D. A., Kurth, W. S., Scarf, F. L., Burns, J. A., Cuzzi, J. N., and Grün, E. 1987. Micron-sized particle impacts detected near Uranus by the Voyager 2 Plasma Wave instrument. J. Geophys. Res., 92, pp. 14,959–14,968.

    ADS  Google Scholar 

  • Gurnett, D. A., Kurth, W. S., Granroth, L. J., Allendorf, S. C., and Poynter, R. L. 1991. Micron-sized particles detected near Neptune by the Voyager 2 plasma wave instrument. J. Geophys. Res., 96, pp. 19,177–19,186.

    ADS  Google Scholar 

  • Gustafson, B. Å. S. 1994. Physics of zodiacal dust. Ann. Rev. Earth Planet. Sci., 22, pp. 553–595.

    ADS  Google Scholar 

  • Hamilton, D. P. 1993. Motion of dust in a planetary magnetosphere: Orbit-averaged equations for oblateness, electromagnetic, and radiation forces with application to Saturn’s E ring. Icarus, 101, pp. 244–264. {ctErratum: Icarus}, 103, p. 161.

    ADS  Google Scholar 

  • Hamilton, D. P. 1994. A comparison of Lorentz, planetary gravitational, and satellite gravitational resonances. Icarus, 109, pp. 221–240.

    Google Scholar 

  • Hamilton, D. P. 1996. The asymmetric time-variable rings of Mars. Icarus, 119, pp.153–172.

    MathSciNet  ADS  Google Scholar 

  • Hamilton, D. P., and Burns, J. A. 1993a. The ejection of dust from Jupiter’s gossamer ring. Nature, 364, pp. 695–699.

    ADS  Google Scholar 

  • Hamilton, D. P., and Burns, J. A. 1993b. OH from Saturn’s rings. Nature, 365, p. 498.

    ADS  Google Scholar 

  • Hamilton, D. P., and Burns, J. A. 1994. The origin of Saturn’s E ring: Self-sustained, naturally. Science, 264, pp. 550–553.

    ADS  Google Scholar 

  • Hamilton, D. P., and Krivov, A. V. 1996. Circumplanetary dust dynamics: Effects of solar gravity, radiation pressure, planetary oblateness, and electromagnetism. Icarus, 123, pp. 503–523.

    ADS  Google Scholar 

  • Hamilton, D. P., and Krivov, A. V. 1997. Dynamics of distant moons of asteroids. Icarus, 128, pp. 141–149.

    Google Scholar 

  • Hamilton, D. P., Rauch, K., and Burns, J. A. 1999. Electromagnetic resonances in Jupiter’s rings. BAAS, 31, p. 1223.

    ADS  Google Scholar 

  • Hiinninen, J. 1993. Numerical simulations of moon-ringlet interaction. Icarus, 103, pp. 104–123.

    ADS  Google Scholar 

  • Hansen, J. E. 1969. Radiative transfer by doubling very thin layers. Astrophys. J., 155, pp. 565–573.

    ADS  Google Scholar 

  • Harrington, J., Cooke, M. L., Forrest, W. J., Pipher, J. L., Dunham, E. W., and Elliot, J. L. 1993. IRTF observations of the occultation of 28 Sgr by Saturn. Icarus, 103, pp. 235–252.

    ADS  Google Scholar 

  • Hartmann, W. K. 1969. Terrestrial, lunar and interplanetary rock fragmentation. Icarus, 10, pp. 201–213.

    ADS  Google Scholar 

  • Hartquist, T. N., Havnes, O., and Morfill, G. E. 1992. The effects of dust on the dynamics of astronomical and space plasmas. Fund. Cosmic Physics, 15, pp. 107–142.

    ADS  Google Scholar 

  • Havnes, O., Morfill, G. E., and Meland, F. 1992. Effects of electromagnetic and plasma drag forces on the orbit evolution of dust in planetary magnetospheres. Icarus, 98, pp. 141–150.

    ADS  Google Scholar 

  • Herbert, F., Sandel, B. R., Yelle, R. V. 1987. The upper atmosphere of Uranus- EUV Occultations observed by Voyager 2. JGR, 92, pp. 15093–15109.

    ADS  Google Scholar 

  • Hood, L. L. 1989. Investigation of the Saturn dust environment from the analysis of energetic charged particle measurements. JPL PD 699-11, Vol. XIII.

    Google Scholar 

  • Horányi, M. 1994. New Jovian ring. GRL, 21, pp. 1039–1042.

    ADS  Google Scholar 

  • Horänyi, M. 1996. Charged dust dynamics in the solar system. Ann. Rev. Astron. Astrophys., 34, pp. 383–418.

    ADS  Google Scholar 

  • Horányi, M., and Burns, J. A. 1991. Charged dust dynamics: Orbital resonance due to planetary shadows. J. Geophys. Res., 96, pp. 19,283–19,289.

    ADS  Google Scholar 

  • Horányi, M., and Cravens, T. E. 1996. Structure and dynamics of Jupiter’s ring. Nature, 381, pp. 293–295.

    ADS  Google Scholar 

  • Horányi, M., and Porco, C. C. 1993. Where exactly are the arcs of Neptune? Icarus, 106, pp. 525–535.

    ADS  Google Scholar 

  • Horányi, M., Burns, J. A., Tátrallyay, M., and Luhmann, J. G. 1990. On the fate of dust lost from the Martian satellites. GRL., 17, pp. 853–856.

    ADS  Google Scholar 

  • Horányi, M., Tátrallyay, M., Juhász, A., and Luhmann, J. G. 1991. The dynamics of submicron dust lost from Phobos. Jnl. Geophys. Res., 96, pp. 11,283–11,290.

    ADS  Google Scholar 

  • Horányi, M., Burns, J. A., and Hamilton, D. P. 1992. The dynamics of Saturn’s E ring particles. Icarus, 97, pp. 248–259.

    ADS  Google Scholar 

  • Horányi, M., Morfill, G., and Grün, E. 1993. Mechanism for the acceleration and ejection of dust grains from Jupiter’s magnetosphere. Nature, 363, pp. 144–146.

    ADS  Google Scholar 

  • Horányi, M., Grün, E., and Heck, A. 1997. Modeling the Galileo dust measurements at Jupiter. GRL, 24, pp. 2175–2178.

    ADS  Google Scholar 

  • Horn, L. J., Hui, J., Lane, A. L., and Colwell, J. E. 1990. Observations of Neptunian rings by the Voyager photopolarimeter experiment. GRL., 17, pp. 1745–1748.

    ADS  Google Scholar 

  • Housen, K. R. and Holsapple, K. A. 1990. On the fragmentation of asteroids and planetary satellites. Icarus, 84, 226–253.

    ADS  Google Scholar 

  • Hubbard, W. B., Brahic, A., Sicardy, B., Elicer, L.-R., Roques, F., and Vilas, F. 1986. Occultation detection of a Neptunian ring-like arc. Nature, 319, pp. 636–640.

    ADS  Google Scholar 

  • Hubbard, W. B., Porco, C. C., Hunten, D. M., Rieke, G. H., Rieke, M. J., McCarthy, D. W., Haemmerle, V., Clark, R., Turtle, E. P., Haller, J., McLeod, B., Lebofsky, L. A., Marcialis, R., Holberg, J. B., Landau, R., Carrasco, L., Elias, J., Buie, M. W., Persson, S. E., Boroson, T., West, S., and Mink, D. J. 1993. The occultation of 28 Sgr by Saturn: Saturn pole position and astrometry. Icarus, 103, pp. 215–234.

    ADS  Google Scholar 

  • Humes D. H. 1976. The Jovian meteoroid environment. In Jupiter, ed. T. Gehrels (Tucson: Univ. Arizona Press), pp. 1052–1067.

    Google Scholar 

  • Humes, D. H. 1980. Results of Pioneer 10 and 11 meteoroid experiments: Interplanetary and near-Saturn. J. Geophys. Res., 85, pp. 5841–5852.

    ADS  Google Scholar 

  • Humes, D. H., Alvarez, J. M., O’Neal, R. L., and Kinard, W. H. 1974. The interplanetary and near-Jupiter meteoroid environments. J. Geophys. Res., 79, pp. 3677–3684.

    ADS  Google Scholar 

  • Ip, W.-H. 1995A. The exospheric system of Saturn’s rings. Icarus, 115, pp. 295–303.

    ADS  Google Scholar 

  • Ip, W.-H. 1995b. Implications of meteoroid-ring interaction for observations of the 1995 Saturn ring-plane crossing. Icarus, 117, pp. 212–215.

    ADS  Google Scholar 

  • Ip, W.-H., and Banaszkiewicz, M. 1990. On the dust-gas tori of Phobos and Deimos. Geophys. Res. Ltrs., 17, pp. 857–860.

    ADS  Google Scholar 

  • Ishimoto, H. 1996. Formation of Phobos/Deimos dust rings. Icarus, 122, pp. 153–165.

    ADS  Google Scholar 

  • Johnson, R. E. 1990. Energetic Charged-Particle Interactions with Atmospheres and Surfaces. (New York: Springer-Verlag), 232 pp.

    Google Scholar 

  • Johnson, R. E., Pospieszalska, M. K., Sitter, E. G., Cheng, A. F., Lanzerotti, L. J., and Sieveka, E. M. 1989. The neutral cloud and heavy ion inner torus at Saturn. Icarus, 77, pp. 311–329.

    ADS  Google Scholar 

  • Johnson, R. E., Grosjean, D. E., Jurac, S., and Baragiola, R. A. 1993. Sputtering, still the dominant source of plasma at Dione? EOS, 74, p. 569, pp. 572-73.

    ADS  Google Scholar 

  • Juhász, A., and Horänyi, M. 1995. Dust torus around Mars. Jnl. Geophys. Res., 100, pp. 3277–3284.

    ADS  Google Scholar 

  • Juhász, A., Tátrallyay, M., Gevai, G., and Horányi, M. 1993. On the density of the dust halo around Mars. Jnl. Geophys. Res., 98, pp. 1205–1211.

    ADS  Google Scholar 

  • Jurac, S., Baragiola, A., Johnson, R. E., and Sittler Jr., E. C. 1995. Charging of ice grains by low-energy plasmas-application to Saturn’s E ring. Jnl. Geophys. Res., 100, pp. 14,821–14,835.

    ADS  Google Scholar 

  • Jurac, S., Johnson, R., and Donn, B. 1998. Monte Carlo calculations of the sputtering of grains: Enhanced sputtering of small grains. Ap. J., 503, pp. 247–252.

    ADS  Google Scholar 

  • Kaula, W. M. 1966. Theory of Satellite Geodesy. (Waltham, MA: Blaisdell Publishing Co.).

    Google Scholar 

  • Kolvoord, R. A., Burns, J. A., and Showalter, M. R. 1990. Periodic features in Saturn’s F ring. Nature, 345, pp. 695–697.

    ADS  Google Scholar 

  • Kozai, Y. 1959. The motion of a close Earth satellite. Astron. J., 64, pp. 367–377.

    MathSciNet  ADS  Google Scholar 

  • Krivov, A. V., and Hamilton, D. P. 1997. Martian dust belts: Waiting for discovery. Icarus, 128, pp. 335–353.

    ADS  Google Scholar 

  • Krü;ger, H., Grün, E., Hamilton, D. P., Baguhl, M., Dermott, S., Fechtig, H., Gustafson, B. A., Hanner, M. S., Heck, A., Horänyi, M., Kissel, J., Lindblad, B. A., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A. M., Morfill, G. E., Polanskey, C., Riemann, R., Schwehm, G., Srama, R, and Zook, H. A. 1999a. Three years of Galileo dust data: II. 1993 to 1995. Planet. Space Sci., 47, pp. 85–106.

    ADS  Google Scholar 

  • Krü;ger, H., Krivov, A. V., Hamilton, D. P., and Grün, E. 1999b. Detection of an impactgenerated dust cloud around Ganymede. Nature, 399, pp. 558–560.

    ADS  Google Scholar 

  • Lane, A. L., Hord, C. W., West, R. A., Esposito, L. W., Coffeen, D. L., Sato, M., Simmons, K. E., Pomphrey, R B., and Morris, R B. 1982. Photopolarimetry from Voyager 2: Preliminary results on Saturn, Titan and the rings. Science, 215, pp. 537–543.

    ADS  Google Scholar 

  • Lane, A. L., Hord, C. W., West, R. A., Esposito, L. W., Simmons, K. E., Nelson, R. M., Wallis, B. D., Buratti, B. J., Horn, L. J., Graps, A. L., and Pryor, W. R 1986. Photopolarimetery from Voyager 2: Initial results from the Uranian atmosphere, satellites, and rings. Science, 233, pp. 65–70.

    ADS  Google Scholar 

  • Lane, A. L., West, R. A., Hord, C. W., Nelson, R. M., Simmons, K. E., Pryor, W. R., Esposito, L. W., Horn, L. J., Wallis, B. D., Buratti, B. J., Brophy, T. G., Yanamandra-Fisher, P., Colwell, J. E., Bliss, D. A., Mayo, M. J., and Smythe, W. D. 1989. Photopolarimetery from Voyager 2: Initial results from the Neptunian atmosphere, satellites, and rings. Science, 246, pp. 1450–1454.

    ADS  Google Scholar 

  • Larson, S. 1984. Summary of optical groundbased E Ring observations at the University of Arizona. In Anneaux des Planètes/Planetary Rings, ed. A. Brahic (Toulouse, France: Cepadues-Editions), pp. 111–113.

    Google Scholar 

  • Lissauer, J. J., and Espresate, J. 1998. Resonant satellite torques on low optical depth particulate disks. I. Analytic development. Icarus, 134, pp. 155–162.

    ADS  Google Scholar 

  • Maravilla, D., Flammer, K. R, and Mendis, D. A. 1995. On the injection of fine dust from the Jovian magnetosphere. Astrophys. Jnl., 438, pp. 968–974.

    ADS  Google Scholar 

  • Marouf, E. A., Tyler, G. L., Zebker, H. A., and Eshleman, V. R. 1983. Particle size distributions in Saturn’s rings from Voyager 1 radio occultation. Icarus, 54, pp. 189–211.

    ADS  Google Scholar 

  • Marouf, E. A., Tyler, G. L., and Rosen, P. M. 1986. Profiling Saturn’s rings by radio occultation. Icarus, 68, pp. 120–166.

    ADS  Google Scholar 

  • Mauk, B. H., Keath, E. P., Kane, M., Krimigis, S. M., Cheng, A. F., Acuiia, M. H., Armstrong, T. P., and Ness, N. F. 1991. The magnetosphere of Neptune: Hot plasmas and energetic particles. J. Geophys. Res., 96, pp. 19,061–19,084.

    ADS  Google Scholar 

  • McGhee, C. A., Nicholson, P. D., French, R. G., and Hall, K. J. 2000. HST Observations of Saturnian satellites during the 1995 ring plane crossings. Icarus, submitted.

    Google Scholar 

  • McMuldroch, S., Pilorz, S. H., Danielson, G. E., and the NIMS science team 2000. Galileo NIMS near-infrared observations of Jupiter’s ring system. Icarus, 146, pp. 1–11.

    Google Scholar 

  • Meier, R, Smith, B. A., Owen, T. C., Becklin, E. E., and Terrile, R J. 1999. Near infrared photometry of the jovian ring and Amalthea. Icarus, 141, pp. 253–262.

    ADS  Google Scholar 

  • Mendis, D. A., and Rosenberg, M. 1994. Cosmic dusty plasma. Ann. Rev. Astron. Astrophys., 32, pp. 419–463.

    ADS  Google Scholar 

  • Mendis, D. A., Hill, J. R., Ip, W.-H., Goertz, C. K., and Grün, E. 1984. Electrodynamic processes in the ring system of Saturn. In Saturn, eds. T. Gehrels and M. S. Matthews (Tucson: University of Arizona Press), pp. 546–589.

    Google Scholar 

  • Meyer-Vernet, N. 1982. Flip-flop of electric potential of dust grains in space. Astron. Astrophys., 105, pp. 98–106.

    ADS  MATH  Google Scholar 

  • Meyer-Vernet, N., Aubier, M. G., and Pedersen, B. M. 1986. Voyager 2 at Uranus: Grain impacts in the ring plane. GRL., 13, pp. 617–620.

    ADS  Google Scholar 

  • Meyer-Vernet, N., Lecacheux, A., and Pedersen, B. M. 1996. Constraints on Saturn’s E ring from the Voyager 1 radio astronomy experiment. Icarus, 123, pp. 113–128.

    ADS  Google Scholar 

  • Meyer-Vernet, N., Lecacheux, A., and Pedersen, B. M. 1998. Constraints on Saturn’s Gring from the Voyager radio astronomy instrument. Icarus, 132, pp. 311–320.

    ADS  Google Scholar 

  • Mignard, F. 1982. Radiation pressure and dust particle dynamics. Icarus, 49, pp. 347–366.

    ADS  Google Scholar 

  • Mignard, F. 1984. Effects ofradiation forces on dust particles in planetary rings. In Planetary Rings, eds. R Greenberg and A. Brahic (Tucson: Univ. of Arizona Press), pp. 333–366.

    Google Scholar 

  • Mignard, F., and Henon, M. 1984. About an unsuspected integrable problem. Gel. Mech., 33, pp. 239–250.

    MathSciNet  ADS  MATH  Google Scholar 

  • Morfill, G. E., Grün, E., and Johnson, T. V. 1980. Dust in Jupiter’s magnetosphere: Physical processes. Planet. Space Sci., 28, p. 1087.

    ADS  Google Scholar 

  • Morfill, G. E., Grün, E., Johnson, T. V., and Goertz, C. K. 1983. On the evolution of Saturn’s spokes: Theory. Icarus, 53, pp. 230–235.

    ADS  Google Scholar 

  • Murray, C. D., and Dermott, S. F. 1999. Solar System Dynamics. (Cambridge University Press).

    Google Scholar 

  • Murray, C. D., and Thompson, R. P. 1990. Orbits of shepherd satellites deduced from the structure of the rings of Uranus. Nature, 348, pp. 499–502 (Erratum: 350, p. 90).

    Google Scholar 

  • Murray, C. D., Gordon, M., and Giulatti-Winter, S. M. 1997. Unraveling the strands of Saturn’s F ring. Icarus, 129, pp. 304–306.

    ADS  Google Scholar 

  • Nicholson, P. D., and Matthews, K. 1991. Near-infrared observations of the Jovian ring and small satellites. Icarus, 93, pp. 331–346.

    ADS  Google Scholar 

  • Nicholson, P. D., Mosqueira, I., and Matthews, K. 1995. Stellar occultation observations of Neptune’s rings: 1984-1988. Icarus, 113, pp. 295–330.

    ADS  Google Scholar 

  • Nicholson, P. D., Showalter, M. R., Dones, L., French, R. G., Larson, S. M., Lissauer, J. J., McGhee, C. A., Seitzer, P., Sicardy, B., and Danielson, G. E. 1996. Observations of Saturn’s ring plane crossings in August and November 1995. Science, 272, pp. 509–515.

    ADS  Google Scholar 

  • Northrop, T. G. 1992. Dusty plasmas. Physica Scripta, 45, pp. 475–490.

    ADS  Google Scholar 

  • Northrop, T. G., and Birmingham, T. J. 1990. Plasma drag on a dust grain due to Coulomb collision. Planet. Space Sci., 38, pp. 319–326.

    ADS  Google Scholar 

  • Northrop, T. G., Mendis, D. A., and Schaffer, L. 1989. Gyrophase drift and the orbital evolution of dust at Jupiter’s ring. Icarus, 79, pp. 101–115.

    ADS  Google Scholar 

  • Oberc, P. 1994. Dust impacts detected by Voyager 2 at Saturn and Uranus: A post-Halley view. Icarus, 111, pp. 211–226.

    ADS  Google Scholar 

  • Ockert, M. E., Cuzzi, J. N., Porco, C. C., and Johnson, T. V. 1987. Uranian ring photometry: Results from Voyager 2. J. Geophys. Res., 92, pp. 14,969–14,978.

    ADS  Google Scholar 

  • Ockert-Bell, M. E., Burns, J. A., Daubar, I. J., Thomas, P. C., Veverka, J., Belton, M. J. S., and Klaasen, K. P. 1999. The structure of Jupiter’s ring system as revealed by the Galileo imaging system. Icarus, 138, pp. 188–213.

    ADS  Google Scholar 

  • Paranicas, C. P., and Cheng, A. F. 1991. Theory of ring sweeping of energetic particles. J. Geophys. Res., 96, pp. 19,123–19,129.

    ADS  Google Scholar 

  • Pedersen, B. M., Meyer-Vernet, N., Aubier, M. G., and Zarka, P. 1991. Dust distribution around Neptune: Grain impacts near the ring plane measured by the Voyager Planetary Radio Astronomy experiment. J. Geophys. Res., 96, pp. 19,187–19,196.

    ADS  Google Scholar 

  • Pollack, J. B., and Cuzzi, J. N. 1980. Scattering by nonspherical particles of size comparable to a wavelength: A new semi-empirical theory and its application to tropospheric aerosols. J. Atmos. Sci., 37, pp. 868–881.

    ADS  Google Scholar 

  • Porco, C. C. 1991. An explanation for Neptune’s ring arcs. Science, 253, pp. 995–1001.

    ADS  Google Scholar 

  • Porco, C. C., and Danielson, G. E. 1982. The periodic variation of spokes in Saturn’s rings. Astron. J., 87, pp. 826–833.

    ADS  Google Scholar 

  • Porco, C. C., Nicholson, P. D., Cuzzi, J. N., Lissauer, J. J., and Esposito, L. W. 1995. Neptune’s ring system. In Neptune and Triton ed. D. P. Cruikshank (Tucson: University of Arizona Press), pp. 703–804.

    Google Scholar 

  • Poulet, F., Karkoschka, E., and Sicardy, B. 1999. Spectrophotometry of Saturn’s small satellites and rings from Hubble Space Telescope images. JGR, 104, pp. 24095–24110.

    ADS  Google Scholar 

  • Poulet, F., Sicardy, B., Nicholson, P. D., Karkoschka, E., and Caldwell, J. 2000a. Saturn’s ring-plane crossings of August and November 1995: A model for the new F-ring objects. Icarus, 144, pp. 135–148.

    ADS  Google Scholar 

  • Poulet, F., Sicardy, B., Dumas, C., Jorda, L., and Tiphéne, D. 2000b. The crossings of Saturn’s ring-plane by the Earth in 1995: Ring thickness. Icarus, 145, pp. 147–165.

    ADS  Google Scholar 

  • Reitsema, H. J., Hubbard, W. B., Lebofsky, L. A., and Tholen, D. J. 1982. Occultation by a possible third satellite of Neptune. Science, 215, pp. 289–291.

    ADS  Google Scholar 

  • Richter, K., and Keller, H. U. 1995. On the stability of dust particle orbits around cometary nuclei. Icarus, 114, pp. 355–371.

    ADS  Google Scholar 

  • Roddier, C., Roddier, F., Graves, J. E., and Northcott, M. J. 1998. Discovery of an arc of particles near Enceladus’ orbit: A possible key to the origin of the E ring. Icarus, 136, pp. 50–59.

    ADS  Google Scholar 

  • Roddier, F., Roddier, C., Brahic, A., Dumas, C., Graves, J. E., Northcott, M. J., and Owen, T. C. 2000. Adaptive optics observations of Saturn’s ring-plane crossing in August 1995. Icarus, 143, pp. 299–307.

    ADS  Google Scholar 

  • Sandel, B. R., Shemansky, D. E., Broadfoot, A. L., Holberg, J. B., Smith, G. R., McConnell, J. C., Strobel, D. F., Atreya, S. K., Donahue, T. M., Moos, H. W., Hunten, D. M., Pomphrey, R. B., and Linick, S. 1982. Extreme ultraviolet observations from the Voyager 2 encounter with Saturn. Science, 215, pp. 548–553.

    ADS  Google Scholar 

  • Schaffer, L., and Burns, J. A. 1987. The dynamics of weakly charged dust: Motion through Jupiter’s gravitational and magnetic fields. Jnl. Geophys. Res., 92, pp. 2264–2280.

    ADS  Google Scholar 

  • Schaffer, L. E., and Burns, J. A. 1992. Lorentz resonances and the vertical structure of dusty rings: Analytical and numerical results. Icarus, 96, pp. 65–84.

    ADS  Google Scholar 

  • Schaffer, L. E., and Burns, J. A. 1994. Charged dust in planetary magnetospheres: Hamiltonian dynamics and numerical simulations for highly charged grains. Jnl. Geophys. Res., 99, pp. 17,211–17,223.

    ADS  Google Scholar 

  • Schaffer, L. E., and Burns, J. A. 1995. Stochastic charging of dust grains in planetary rings: Diffusion rates and their effect on Lorentz resonances. Jnl. Geophys. Res., 100, pp. 213–234.

    ADS  Google Scholar 

  • Showalter, M. R. 1989. Anticipated time variations in (our understanding of) Jupiter’s ring system. In Time- Variable Phenomena in the Jovian System, eds. M. J. S. Belton, R. A. West, and J. Rahe, NASA-SP 494, pp. 116–125.

    Google Scholar 

  • Showalter, M. R. 1991. Visual detection of 1981S13, Saturn’s eighteenth satellite, and its role in the Encke Gap. Nature, 351, pp. 709–713.

    ADS  Google Scholar 

  • Showalter, M. R. 1993. Longitudinal variations in the Uranian lambda Ring. Bull. Amer. Astron. Soc., 25, p. 1109.

    ADS  Google Scholar 

  • Showalter, M. R. 1994. Tracking clumps in Saturn’s F Ring. Bull. Amer. Astron. Soc., 26, pp. 1150–1151.

    ADS  Google Scholar 

  • Showalter, M. R. 1995. Arcs and clumps in the Uranian ⋋ Ring. Science, 267, pp. 490–493.

    ADS  Google Scholar 

  • Showalter, M. R. 1996. Saturn’s D Ring in the Voyager images. Icarus, 124, pp. 677–689.

    ADS  Google Scholar 

  • Showalter, M. R. 1998. Detection of centimeter-sized meteoroid impact events in Saturn’s F Ring. Science, 282, pp. 1099–1102.

    ADS  Google Scholar 

  • Showalter, M. R., and Burns, J. A. 1982. A numerical study of Saturn’s F ring. Icarus, 52, pp. 526–544.

    ADS  Google Scholar 

  • Showalter, M. R., and Cuzzi, J. N. 1992. Physical properties of Neptune’s ring system. Bull. Amer. Astron. Soc., 24, p. 1029.

    ADS  Google Scholar 

  • Showalter, M. R., and Cuzzi, J. N. 1993. Seeing ghosts: Photometry of Saturn’s GRing. Icarus, 103, pp. 124–143.

    ADS  Google Scholar 

  • Showalter, M. R., Burns, J. A., Cuzzi, J. N., and Pollack, J. B. 1985. The discovery of Jupiter’s ‘gossamer’ ring. Nature, 316, pp. 115–119.

    ADS  Google Scholar 

  • Showalter, M. R., Burns, J. A., Cuzzi, J. N., and Pollack, J. B. 1987. Jupiter’s ring system: New results on structure and particle properties. Icarus, 69, pp. 458–498.

    ADS  Google Scholar 

  • Showalter, M. R., Cuzzi, J. N., and Larson, S. M. 1991. Structure and particle properties of Saturn’s E Ring. Icarus, 94, pp. 451–473.

    ADS  Google Scholar 

  • Showalter, M. R., Pollack, J. B., Ockert, M. E., Doyle, L., and Dalton, J. B. 1992. A photometric study of Saturn’s F Ring. Icarus, 100, pp. 394–411.

    ADS  Google Scholar 

  • Showalter, M. R., Burns, J. A., and Hamilton, D. P. 1998. Saturn’s “gossamer” ring: The F ring’s inner sheet and its interaction with Prometheus BAAS, 30, p. 1044.

    ADS  Google Scholar 

  • Sicardy, B., Roques, F., and Brahic, A. 1991. Neptune’s rings 1983-1989 Ground-based stellar occultation observations I. Ring-like arc detections. Icarus, 89, pp. 220–243.

    ADS  Google Scholar 

  • Sicardy, B., Roddier, F., Roddier, C., Perozzi, E., Graves, J. E., Guyon, O., and Northcott, M. J. 1999. Images of Neptune’s ring arcs obtained by a ground-based telescope. Nature, 400, pp. 731–733.

    ADS  Google Scholar 

  • Simonelli, D. P., Rossier, L., Thomas, P. C., Veverka, J., Burns, J. A., and Belton, M. J. S. 2000. Leading-trailing albedo asymmetries of Thebe, Amalthea and Metis. Icarus, 147, 353–365.

    ADS  Google Scholar 

  • Simpson, J. A., Bastian, T. S., Chenette, D. L., McKibben, R. B., and Pyle, K. R. 1980. The trapped radiations of Saturn and their absorption by satellites and rings. J. Geophys. Res., 85, pp. 5731–5762.

    ADS  Google Scholar 

  • Smith, B. A., Soderblom, L. A., Johnson, T. V., Ingersoll, A. P., Collins, S. A., Shoemaker, E. M., Hunt, G. E., Masursky, H., Carr, M. H., Davies, M. E., Cook, A. F., II, Boyce, J., Danielson, G. E., Owen, T., Sagan, C., Beebe, R. F., Veverka, J., Strom, R. G., McCauley, J. F., Morrison, D., Briggs, G. A., and Suomi, V. E. 1979a. The Jupiter system through the eyes of Voyager I. Science, 204, pp. 951–972.

    ADS  Google Scholar 

  • Smith, B. A., Soderblom, L. A., Beebe, R., Boyce, J., Briggs, G., Carr, M., Collins, S. A., Cook, A. F., II, Danielson, G. E., Davies, M. E., Hunt, G. E., Ingersoll, A., Johnson, T. V., Masursky, H., McCauley, J., Morrison, D., Owen, T., Sagan, C., Shoemaker, E. M., Strom, R., Suomi, V. E., and Veverka, J. 1979b. The Galilean satellites and Jupiter: Voyager 2 Imaging Science results. Science, 206, pp. 927–950.

    ADS  Google Scholar 

  • Smith, B. A., Soderblom, L., Beebe, R., Boyce, J., Briggs, G., Bunker, A., Collins, S. A., Hansen, C. J., Johnson, T. V., Mitchell, J. L., Terrile, R. J., Carr, M., Cook, A. F., II, Cuzzi, J., Pollack, J. B., Danielson, G. E., Ingersoll, A., Davies, M. E., Hunt, G. E., Masursky, H., Shoemaker, E., Morrison, D., Owen, T., Sagan, C., Veverka, J., Strom, R., and Suomi, V. E. 1981. Encounter with Saturn: Voyager 1 Imaging Science results. Science, 212, pp. 163–191.

    ADS  Google Scholar 

  • Smith, B. A., Soderblom, L., Batson, R., Bridges, P., Inge, J., Masursky, H., Shoemaker, E., Beebe, R., Boyce, J., Briggs, G., Bunker, A., Collins, S. A., Hansen, C. J., Johnson, T. V., Mitchell, J. L., Terrile, R. J., Cook, A. F., II, Cuzzi, J., Pollack, J. B., Danielson, G. E., Ingersoll, A. P., Davies, M. E., Hunt, G. E., Morrison, D., Owen, T., Sagan, C., Veverka, J., Strom, R., and Suomi, V. E. 1982. A new look at the Saturn system: The Voyager 2 images. Science, 215, pp. 504–537.

    ADS  Google Scholar 

  • Smith, B. A., Soderblom, L. A., Beebe, R., Bliss, D., Boyce, J. M., Brahic, A., Briggs, G. A., Brown, R. H., Collins, S. A., Cook, A. F., II, Croft, S. K., Cuzzi, J. N., Danielson, G. E., Davies, M. E., Dowling, T. E., Godfrey, D., Hansen, C. J., Harris, C., Hunt, G. E., Ingersoll, A. P., Johnson, T. V., Krauss, R. J., Masursky, H., Morrison, D., Owen, T., Plescia, J. B., Pollack, J. B., Porco, C. C., Rages, K., Sagan, C., Shoemaker, E. M., Sromovsky, L. A., Stoker, C., Strom, R. G., Suomi, V. E., Synnott, S. P., Terrile, R. J., Thomas, P., Thompson, W. R., and Veverka, J. 1986. Voyager 2 in the Uranian system: Imaging Science results. Science, 233, pp. 43–64.

    ADS  Google Scholar 

  • Smith, B. A., Soderblom, L. A., Banfield, D., Barnet, C., Basilevsky, A. T., Beebe, R. F., Bollinger, K., Boyce, J. M., Brahic, A., Briggs, G. A., Brown, R. H., Chyba, C., Collins, S. A., Colvin, T., Cook, A. F., II, Crisp, D., Croft, S. K., Cruikshank, D., Cuzzi, J. N., Danielson, G. E., Davies, M. E., De Jong, E., Dones, L., Godfrey, D., Goguen, J., Grenier, I., Haemmerle, V. R., Hammel, H., Hansen, C. J., Helfenstein, P., Howell, C., Hunt, G. E., Ingersoll, A. P., Johnson, T. V., Kargel, J., Kirk, R., Kuehn, D. I., Limaye, S., Masursky, H., McEwen, A., Morrison, D., Owen, T., Owen, W., Pollack, J. B., Porco, C. C., Rages, K., Rogers, P., Rudy, D., Sagan, C., Schwartz, J., Shoemaker, E. M., Showalter, M., Sicardy, B., Simonelli, D., Spencer, J., Sromovsky, L. A., Stoker, C., Strom, R. G., Suomi, V. E., Synnott, S. P., Terrile, R. J., Thomas, P., Thompson, W. R., Verbiscer, A., and Veverka, J. 1989. Voyager 2 at Neptune: Imaging Science results. Science, 246, pp. 1422–1449.

    ADS  Google Scholar 

  • Smyth, W. H., and Marconi, M. L. 1993. The nature of the hydrogen tori of Titan and Triton. Icarus, 101, pp. 18–32.

    ADS  Google Scholar 

  • Soter, S. 1971. The dust belts of Mars. Cornell CRSR Report 472.

    Google Scholar 

  • Spitzer, L. 1962. Physics of Fully Ionized Gases(2nd ed.), (NY: Interscience), 190 pp.

    Google Scholar 

  • Stern, D.P. 1976. Representation of magnetic fields in space. Rev. Geophys. Space Phys., 14, pp. 199–214.

    ADS  Google Scholar 

  • Stevenson, D. J., Harris, A. W., and Lunine, J. I. 1986. Origins of satellites. In Satellites, eds. J. A. Burns and M. S. Matthews (Tucson: Arizona Press), pp. 39–88.

    Google Scholar 

  • Synnott, S. P., Terrile, R. J., Jacobson, R. A., and Smith, B. A. 1983. Orbits of Saturn’s F ring and its shepherding satellites. Icarus, 53, pp. 156–158.

    ADS  Google Scholar 

  • Tagger, M., Henricksen, R. N., and Pellat, R. 1991. On the nature of the spokes in Saturn’s rings. Icarus, 91, pp. 297–314.

    ADS  Google Scholar 

  • Thomas, P. C., Veverka, J., and Helfenstein, P. 1995. Neptune’s small satellites. In Neptune and Iriton, ed. D. P. Cruikshank (Tucson: University of Arizona Press), pp. 685–699.

    Google Scholar 

  • Thomas, P. C., Burns, J. A., Rossier, L., Simonelli, D., Veverka, J., Chapman, C. R., Klaasen, K., Johnson, T. V., and Belton, M. J. S. 1998. The small inner satellites of Jupiter. Icarus, 135, pp. 360–371.

    ADS  Google Scholar 

  • Throop, H. B., and Esposito, L. W. 1998. G ring particle sizes derived from ring plane crossing observations. Icarus, 131, pp. 152–166.

    ADS  Google Scholar 

  • Tsintikidis, D., Gurnett, D., Granroth, L. J., Allendorf, S. C., and Kurth, W. S. 1994. A revised analysis of micron-sized particles detected near Saturn by the Voyager 2 Plasma Wave instrument. J. Geophys. Res., 99, pp. 2261–2270.

    ADS  Google Scholar 

  • Tsintikidis, D., Kurth, W. S., Gurnett, D. A., and Barbosa, D. A. 1995. Study of dust in the vicinity of Dione using the Voyager 1 plasma wave instrument. J. Geophys. Res., 99, pp. 2261–2270.

    ADS  Google Scholar 

  • Tsintikidis, D., Gurnett, D., Kurth, W. S., and Granroth, L. J. 1996. Micron-sized particles discovered in the vicinity of Jupiter by the Voyager plasma wave instruments. GRL, 23, pp. 997–1000.

    ADS  Google Scholar 

  • Tyler, G. L., Eshleman, V. R., Anderson, J. D., Levy, G. S., Lindal, G. F., Wood, G. E., and Croft, T. A. 1981a. Radio Science investigations of the Saturn system with Voyager 1: Preliminary results. Science, 212, pp. 201–206.

    ADS  Google Scholar 

  • Tyler, G. L., Marouf, E. A., and Wood, G. E. 1981b. Radio occultation of Jupiter’s ring: Bounds on optical depth and particle size, and a comparison with infrared and optical results. J. Geophys. Res., 86, pp. 8699–8703.

    ADS  Google Scholar 

  • Tyler, G. L., Marouf, R. A., Simpson, R. A., Zebker, H. A., and Eshleman, V. R. 1983. The microwave opacity of Saturn’s rings at wavelengths of 3.6 and 13 cm from Voyager 1 radio occultation. Icarus, 54, pp. 160–188.

    ADS  Google Scholar 

  • Tyler, G. L., Sweetnam, D. N., Anderson, J. D., Campbell, J. K., Eshleman, V. R., Hinson, D. P., Levy, G. S., Lindal, G. F., Marouf, E. A., and Simpson, R. A. 1986. Voyager 2 Radio Science observations of the Uranian system: Atmosphere, rings and satellites. Science, 233, pp. 79–84.

    ADS  Google Scholar 

  • Tyler, G. L., Sweetnam, D. N., Anderson, J. D., Borutzki, S. E., Campbell, J. K., Eshleman, V. R., Gresh, D. L., Gurrola, E. M., Hinson, D. P., Kawashima, N., Kursinski, E. R., Levy, G. S., Lindal, G. F., Lyons, J. R., Marouf, E. A., Rosen, P. A., Simpson, R. A., and Wood, G. E. 1989. Voyager Radio Science observations of Neptune and Triton. Science, 246, pp. 1466–1473.

    ADS  Google Scholar 

  • Van Allen, J. A. 1982. Findings on rings and inner satellites of Saturn by Pioneer 11. Icarus, 51, pp. 509–527.

    ADS  Google Scholar 

  • Van Allen, J. A. 1983. Absorption of energetic protons by Saturn’s Ring G. J. Geophys. Res., 88, pp. 6911–6918.

    ADS  Google Scholar 

  • Van Allen, J. A. 1987. An upper limit on the sizes of shepherding satellites at Saturn’s Ring G. J. Geophys. Res., 92, pp. 1153–1159.

    ADS  Google Scholar 

  • Van Allen, J. A., Randall, B. A., and Thomsen, M. F. 1980. Sources and sinks of energetic electrons and protons in Saturn’s magnetosphere. J. Geophys. Res., 85, pp. 5679–5694.

    ADS  Google Scholar 

  • van de Hulst, H. C. 1981. Light Scattering by Small Particles. (New York: Dover Publications).

    Google Scholar 

  • Weidenschilling, S. J., Chapman, C. R., Davis, D. R. and Greenberg, R. 1982. In Planetary Rings, eds. R. Greenberg and A. Brahic (Tucson: University of Arizona Press). pp. 367–415.

    Google Scholar 

  • Wyatt, S. P., and Whipple, F. L. 1950. The Poynting-Robertson effect on meteor orbits. Ap. J., 111, pp. 134–141.

    ADS  Google Scholar 

  • Zebker, H. A., Marouf, E. A., and Tyler, G. L. 1985. Saturn’s rings: Particle size distributions for thin layer models. Icarus, 64, pp. 531–548.

    ADS  Google Scholar 

  • Zook, H. A., Grün, E., Baguhl, M., Hamilton, D. P., Linkert, G., Liou, J.-C., Forsyth, R., and Phillips, J. L. 1996. Solar magnetic field bending of jovian dust trajectories. Science, 274, pp. 1501–1503.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burns, J.A., Hamilton, D.P., Showalter, M.R. (2001). Dusty Rings and Circumplanetary Dust: Observations and Simple Physics. In: Grün, E., Gustafson, B.Å.S., Dermott, S., Fechtig, H. (eds) Interplanetary Dust. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56428-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56428-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62647-0

  • Online ISBN: 978-3-642-56428-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics