Skip to main content

Boundary Element Methods for Eddy Current Computation

  • Conference paper
Computational Electromagnetics

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 28))

Summary

This paper studies numerical methods for eddy current problems in the case of homogeneous, isotropic, and linear materials. It provides a survey of approaches that entirely rely on boundary integral equations and their conforming Galerkin discretization. The pivotal role of potentials is discussed, as well as the topological issues raised by their use. Direct boundary integral equations and the so-called symmetric coupling of the integral equations corresponding to the conductor and the non-conducting regions is employed. It gives rise to coupled variational problems that are elliptic in suitable trace spaces. This implies quasi-optimal convergence of Galerkin boundary element schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Albanese and G. Rubinacci, Fomulation of the eddy-current problem, IEE Proc. A, 137 (1990), pp. 16–22.

    Google Scholar 

  2. A. Alonso-Rodriguez, P. Fernandes, and A. Valli, Weak and strong formulations for the time-harmonic eddy-current problem in general domains, Report UTM 603, Dipartimento di Matematica, Universita degli Studi di Trento, Trento, Italy, September 2001.

    Google Scholar 

  3. H. Ammari, A. Buffa, and J.-C. NÉdÉlec, A justification of eddy currents model for the Maxwell equations, SIAM J. Appl. Math., 60 (2000), pp. 1805–1823.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional nonsmooth domains, Math. Meth. Appl. Sci., 21 (1998), pp. 823–864.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Baldomir, Differential forms and electromagnetism in 3-dimensional Euclidean space3, IEE Proc. A, 133 (1986), pp. 139–143.

    MathSciNet  Google Scholar 

  6. D. Baldomir and P. Hammond, Geometry of Electromagnetic Systems, Clarendon Press, Oxford, 1996.

    MATH  Google Scholar 

  7. A. Bossavit, Two dual formulations of the 3D eddy-currents problem, COMPEL, 4 (1985), pp. 103–116.

    Article  MathSciNet  Google Scholar 

  8. A. Bossavit, Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism, IEE Proc. A, 135 (1988), pp. 493–500.

    Google Scholar 

  9. A. Bossavit, A new viewpoint on mixed elements, Meccanica, 27 (1992), pp. 3–11.

    Article  MATH  Google Scholar 

  10. A. Bossavit, Computational Electromagnetism.Variational Formulation, Complementarity, Edge Elements, vol. 2 of Electromagnetism Series, Academic Press, San Diego, CA, 1998.

    Google Scholar 

  11. A. Bossavit and J. VÉritÉ, A mixed FEM-BIEM method to solve 3D eddycurrent problems, IEEE Trans. MAG, 18 (1982), pp. 431–435.

    Article  Google Scholar 

  12. A. Bossavit and J. Vérité, TheTrifoucode: Solving the three-dimensional eddy-currents problem by using h as a state variable, IEEE Trans. Mag., 19 (1983), pp. 2465–2470.

    Article  Google Scholar 

  13. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer, 1991.

    Google Scholar 

  14. A. Buffa, Hodge decompositions on the boundary of a polyhedron: The multiconnected case, Math. Mod. Meth. Appl. Sci., 11 (2001), pp. 1491–1504.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. BUFFA —, Traces theorems for functional spaces related to Maxwell equations: An overwiew, this volume, pp. ??-??.

    Google Scholar 

  16. A. Buffa and P. Ciarlet, On traces for functional spaces related to Maxwell’s equations. Part I: An integration by parts formula in Lipschitz polyhedra., Math. Meth. Appl. Sci., 24 (2001), pp. 9–30.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Buffa and P. Ciarlet, On traces for functional spaces related to Maxwell’s equations. Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications, Math. Meth. Appl. Sci., 24 (2001), pp. 31–48.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Buffa, M. Costabel, and C. Schwab, Boundary element methods for Maxwell’s equations on non-smooth domains, Report 2001-01, Seminar für Angewandte Mathematik, ETH Zürich, Zürich Switzerland, 2001. To appear in Numer. Math.

    Google Scholar 

  19. A. Buffa, R. Hiptmair, T. Von Petersdorff, and C. Schwab, Boundary element methods for Maxwell equations on Lipschitz domains, Numer. Math., (2002). To appear.

    Google Scholar 

  20. P. Ciarlet, The Finite Element Method for Elliptic Problems, vol. 4 of Studies in Mathematics and its Applications, North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  21. D. Colton and R. Kress, Integral equation methods in scattering theory, Pure and Applied Mathematics, John Wiley & Sons, 1983.

    Google Scholar 

  22. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93 of Applied Mathematical Sciences, Springer-Verlag, Heidelberg, 2nd ed., 1998.

    Google Scholar 

  23. M. Costabel, Symmetric methods for the coupling of finite elements and boundary elements, in Boundary Elements IX, C. Brebbia, W. Wendland, and G. Kuhn, eds., Springer-Verlag, Berlin, 1987, pp. 411–420.

    Google Scholar 

  24. M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results, SIAM J. Math. Anal., 19 (1988), pp. 613–626.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Costabel and M. Dauge, Singularities of Maxwell’s equations on polyhedral domains, in Analysis, Numerics and Applications of Differential and Integral Equations, M. Bach, ed., vol. 379 of Longman Pitman Res. Notes Math. Ser., Addison Wesley, Harlow, 1998, pp. 69–76.

    Google Scholar 

  26. M. Costabel and M. Dauge, Maxwell and Lamé eigenvalues on polyhedra, Math. Methods Appl. Sci., 22 (1999), pp. 243–258.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 4, Springer, Berlin, 1990.

    Book  Google Scholar 

  28. G. Deschamps, Electromagnetics and differential forms, Proc. IEEE, 69 (1981), pp. 676–695.

    Article  Google Scholar 

  29. H. Dirks, Quasi-stationary fields for microelectronic applications, Electrical Engineering, 79 (1996), pp. 145–155.

    Article  Google Scholar 

  30. P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions, Math. Models Meth. Appl. Sci., M3AS, 7 (1997), pp. 957–991.

    Article  MathSciNet  MATH  Google Scholar 

  31. V. Girault, Curl-conforming finite element methods for Navier-Stokes equations with non-standard boundary conditions in3, vol. 1431 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1989, pp. 201–218.

    Google Scholar 

  32. V. Girault and P. Raviart, Finite element methods for Navier-Stokes equations, Springer, Berlin, 1986.

    Book  MATH  Google Scholar 

  33. P. Gross, Efficient finite element-based algorithms for topological aspects of 3-dimensional magnetoquasistatic problems, PhD thesis, College of Engineering, Boston University, Boston,USA, 1998.

    Google Scholar 

  34. R. Hiptmair, Canonical construction of finite elements, Math. Comp., 68 (1999), pp. 1325–1346.

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Hiptmair —, Symmetric coupling for eddy current problems, Tech. Rep. 148, Sonderforschungsbereich 382, Universität Tübingen, Tübingen, Germany, March 2000. To appear in SIAM J. Numer. Anal.

    Google Scholar 

  36. R. Hiptmair and J. Ostrowski, Generators of H 1h,ℤ)for triangulated surfaces: Construction and classification, Report 160, SFB 382, Universität Tübingen, Tübingen, Germany, 2001. To appear in SIAM J. Computing.

    Google Scholar 

  37. C. Huber, W. Rieger, M. Haas, and W. Rucker, A boundary element formulation using higher order curvilinear edge elements, IEEE Trans. Mag., 34 (1998), pp. 2441–2444.

    Article  Google Scholar 

  38. K. Ishibashi, Eddy current analysis by BEM utilizing edge boundary conditions, IEEE Trans. Mag., 32 (1996), pp. 832–835.

    Article  Google Scholar 

  39. K. Ishibashi, Eddy current analysis by integral equation method utilizing loop electric and surface magnetic currents as unknowns, IEEE Trans. Mag., 34 (1998), pp. 2585–2588.

    Article  Google Scholar 

  40. L. Kettunen, K. Forsman, and A. Bossavit, Gauging in Whitney spaces, IEEE Trans. Magnetics, 35 (1999), pp. 1466–1469.

    Article  Google Scholar 

  41. P. Kotiuga, On making cuts for magnetic scalar potentials in multiply connected regions, J. Appl. Phys., 61 (1987), pp. 3916–3918.

    Article  Google Scholar 

  42. P. Kotiuga, An algorithm to make cuts for magnetic scalar potentials in tetrahedral meshes based on the finite element method, IEEE Trans. Magnetics, 25 (1989), pp. 4129–4131.

    Article  Google Scholar 

  43. P. Kotiuga —, Topological considerations in coupling magnetic scalar potentials to stream functions describing surface currents, IEEE Trans. Magnetics, 25 (1989), pp. 2925–2927.

    Article  Google Scholar 

  44. M. Kuhn and O. Steinbach, FEM-BEM coupling for 3d exterior magnetic field problems, Math. Meth. Appl. Sci., (2002). To appear.

    Google Scholar 

  45. S. Kurz, J. Fetzer, G. Lehner, and W. Rucker, A novel formulation for 3D eddy current problems with moving bodies using a Lagrangian description and BEM-FEM coupling, IEEE Trans. Mag., 34 (1998), pp. 3068–3073.

    Article  Google Scholar 

  46. I. Mayergoyz, 3D eddy current problems and the boundary integral equation method, in Computational electromagnetics, Z. Cendes, ed., Elsevier, Amsterdam, 1986, pp. 163–171.

    Google Scholar 

  47. R. Mccamy and E. Stephan, Solution procedures for three-dimensional eddycurrent problems, J. Math. Anal. Appl., 101 (1984), pp. 348–379.

    Article  MathSciNet  Google Scholar 

  48. W. Mclean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge,UK, 2000.

    MATH  Google Scholar 

  49. J. NÉdÉlec, Mixed finite elements in3, Numer. Math., 35 (1980), pp. 315–341.

    Article  MathSciNet  Google Scholar 

  50. J.-C. NÉdÉlec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, vol. 44 of Applied Mathematical Sciences, Springer-Verlag, Berlin, 2001.

    MATH  Google Scholar 

  51. M. Reissel, On a transmission boundary-value problem for the time-harmonic Maxwell equations without displacement currents, SIAM J. Math. Anal., 24 (1993), pp. 1440–1457.

    Article  MathSciNet  MATH  Google Scholar 

  52. Z. Ren, F. Bouillault, A. Razek, A. Bossavit, and J. VÉritÉ, A new hybrid model using electric field formulation for 3D eddy-current problems, IEEE Trans. Mag., 36 (1990), p. 473.

    Google Scholar 

  53. Z. Ren, F. Bouillault, A. Razek, and J. VeritÉ, Comparison of different boundary integral formulations when coupled with finite elements in three dimensions, IEE Proc. A, 135 (1988), pp. 501–505.

    Google Scholar 

  54. Z. Ren and A. Razek, New techniques for solving three-dimensional multiply connected eddy-current problems, IEE Proc. A, 137 (1990), pp. 135–140.

    Google Scholar 

  55. A. Schwarz, Topology for Physicists, vol. 308 of Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, 1994.

    Google Scholar 

  56. J. Shen, Computational electromagnetics using boundary elements, vol. 24 of Topics in Engineering, Computational Mechanics Publ., Southampton, Boston, 1995.

    MATH  Google Scholar 

  57. O. Sterz and C. Schwab, A scalar BEM for time harmonic eddy current problems with impedance boundary conditions, in Scientific Computing in Electrical Engineering, U. van Rienen, M. Günther, and D. Hecht, eds., vol. 18 of Lecture Notes in Computational Science and Engineering, Springer, Berlin, Germany, 2001, pp. 129–136.

    Chapter  Google Scholar 

  58. J. Yuan, X. Ma, and X. Cui, Three-dimensional eddy current calculation by an adaptive three-component boundary element algorithm, IEEE Trans. Magnetics, 33 (1997), pp. 1275–1278.

    Article  Google Scholar 

  59. D. Zheng, Three-dimensional eddy current analysis by the boundary element method, IEEE Trans. Magnetics, 33 (1997), pp. 1354–1357.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hiptmair, R. (2003). Boundary Element Methods for Eddy Current Computation. In: Monk, P., Carstensen, C., Funken, S., Hackbusch, W., Hoppe, R.H.W. (eds) Computational Electromagnetics. Lecture Notes in Computational Science and Engineering, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55745-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55745-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44392-6

  • Online ISBN: 978-3-642-55745-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics