Skip to main content

Proteolytic Processing of Foamy Virus Gag and Pol Proteins

  • Chapter
Foamy Viruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 277))

Abstract

The foamy viral proteases (FV PRs) are set apart from other retroviral processing enzymes by unique features. The first remarkable property is that FV PRs are enzymatically active as high-molecular-mass Pro-Pol proteins. Hence there exist multiple forms of active FV PRs that likely contribute to cleavage site specificity. A FV PR of low molecular size is not detectable in purified virions, in contrast to PRs of other retroviruses that are found in virus particles. Because the major part of Pol remains attached to the amino-terminal enzymatically active PR protein region, the FV-specific way of expressing Pro-Pol polyproteins from a pol-specific transcript provides for the incorporation of Pro-Pol and IN into virus particles. Proteolytic processing of Gag and Pol proteins is incomplete and delayed. Another novel feature is that the catalytic center of the active dimers of cat FV PR consists of D-S/T-Q instead of D-S/T-G, an unprecedented feature of this enzyme. The temporal and spatial control and the factors that regulate FV PRs remain to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babe LM, Craik CS (1997) Viral proteases: evolution of diverse structural motifs to optimize function. Cell 91:427-430

    Article  PubMed  CAS  Google Scholar 

  • Baldwin DN, Linial ML (1999) Proteolytic activity, the carboxy-terminus of Gag, and the primer binding site are not required for Pol incorporation into foamy virus particles. J Virol 73:6387-93

    PubMed  CAS  Google Scholar 

  • Bartholomä A, Muranyi W, Flügel RM (1992) Bacterial expression of the capsid antigen domain and identification of native Gag proteins from spumavirus-infected cells. Virus Res 23:27-38

    Article  PubMed  Google Scholar 

  • Bernstein NK, Cherney MM, Loetscher H, Ridley RG James MNG (1999) Crystal structure of the novel aspartic proteinase zymogen proplasmin II from Plasmodium falciparum. Nature Struct Biol 6:32-37

    Article  PubMed  CAS  Google Scholar 

  • Bodem J, Löchelt M, Winkler I, Flower RT, Delius H, Flügel RM (1996) Characterization of the spliced pol transcript of feline foamy virus: the splice acceptor of the pol transcript is located in gag of foamy viruses. J Virol 70:9024-9027.

    PubMed  CAS  Google Scholar 

  • Bodem J, Löchelt M, Flügel RM (1998) Detection of subgenomic cDNAs and mapping of feline foamy virus mRNAs reveals complex patterns of transcription. Virology 244:417-426

    Article  PubMed  CAS  Google Scholar 

  • Coffin JM, Hughes SH, Varmus HE (eds) (1997) Synthesis, assembly and processing of viral proteins. Cold Spring Harbor Laboratory Press, New York, pp 263-334 Davis et al. (1999) J Virol 73:11-56

    Google Scholar 

  • Dunn B (1997) Splitting image. Nat Struct Biol 4:969-972

    Google Scholar 

  • Enssle J., Jordan I, Mauer B, Rethwilm A. (1996) Foamy virus reverse transcriptase is expressed independently from the Gag protein. Proc Nat. Acad Sci USA 93:4137-4141

    Article  CAS  Google Scholar 

  • Enssle J., Fischer N, Moebes A, Mauer B, Smola U, Rethwilm A. (1997) Carboxy-terminal cleavage of the human foamy virus gag precursor molecule is an essential step in the viral life cycle. J Virol 71:7312-7317

    PubMed  CAS  Google Scholar 

  • Enssle J., Moebes A, Henkelein, M., Panhuysen, M., Mauer, B., Schweizer, M., Neumann-Haefelin, D., Rethwilm A. (1999) An active human foamy virus integrase is required for viral replication. J Gen Virol 80: 1445-1452

    PubMed  CAS  Google Scholar 

  • Fenyövalvi G, Bagossi P, Copeland TD, Orozlan S, Boross P, Tözser J (1999) Expression and characterization of the human foamy virus proteinase. FEBS Lett 462:397-401

    Article  Google Scholar 

  • Georgiadis MM, Jessen SM, Ogata CM, Telesnitzky A, Goff SP, Hendrickson WA (1995) Mechanistic implications from the structure of a catalytic fragment of Moloney murine leukemia reverse transcriptase. Curr Biol 3:879-892

    CAS  Google Scholar 

  • Hahn H, Baunach G, Bräutigam S, Mergia A, Neumann-Haefelin D, Daniel MD, McClure MO, Retwilm A (1994) Reactivity of primate sera to foamy virus Gag and Bet proteins. J Gen Virol 75:2635-26344

    Article  PubMed  CAS  Google Scholar 

  • Heinkelein M, Thurow J, Dressler M, Imrich H, Neumann-Haefelin D, McClure MO, Rethwilm A (2000) Complex effects of deletion in the 5' untranslated region of primate foamy virus on viral gene expression and RNA packaging. J Virol 74:3141-3148

    Article  PubMed  CAS  Google Scholar 

  • Holzschu DL, Delaney MA, Renshaw RW (1998) The nucleotide sequence and pol mRNA levels of the nonprimate spumavirus bovine foamy virus. J Virol 72:2177-2182

    PubMed  CAS  Google Scholar 

  • Khan AR, James MNG (1998) Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci 7:815-836

    Article  PubMed  CAS  Google Scholar 

  • Kögel D, Aboud M, Flügel RM (1995) Molecular biological characterization of the human foamy virus reverse transcriptase and ribonuclease H domains. Virology 213:97-108

    Article  PubMed  Google Scholar 

  • Konvalinka J, Löchelt M, Zentgraf H, Flügel RM, Kräusslich H-G (1995) Active spumavirus proteinase is essential for virus infectivity but not for formation of the Pol polyprotein. J Virol 69:7264-7268

    PubMed  CAS  Google Scholar 

  • Kotler M, Katz RA, Danho W, Leis J, Skalka AM (1988) Synthetic peptides as substrates and inhibitors of a retroviral protease. Proc Natl Acad Sci USA 85:4185-4189

    Article  PubMed  CAS  Google Scholar 

  • Laco GS, Fitzgerald MC, Morris GM, Olson AJ, Kent SBH, Elder JH (1997) Molecular analysis of the feline immunodeficiency virus protease: generation of a novel form of the protease by autoproteolysis and construction of cleavage-resistant proteases. J Virol 71:5505-5511

    PubMed  CAS  Google Scholar 

  • Lecellier CH, Saib A (2000) Foamy viruses: between retroviruses and pararetroviruses. Virology 271:1-8

    Article  PubMed  CAS  Google Scholar 

  • Lee AY, Gulnik SV, Erickson JW (1998) Conformational switching in an aspartatic proteinase. Nat Struct Biol 5:866-871

    Article  PubMed  CAS  Google Scholar 

  • Linial ML (1999) Foamy viruses are unconventional retroviruses. J Virol 73:1747-1755

    Google Scholar 

  • Löchelt M, and Flügel RM (1995) The molecular biology of primate spumaviruses. In: Levy JA (ed) The Retroviridae, Vol 4, pp 239-292, Plenum Press, New York

    Google Scholar 

  • Löchelt M, Flügel RM (1996) The human foamy virus pol gene is expressed as a Pro-Pol polyprotein and not as a Gag-Pol fusion protein. J Virol 70:1033-1040

    PubMed  Google Scholar 

  • Lois JM, Dyda F, Nashed NT, Kimmel AR, Davies DR (1998) Hydrophilic peptides from the transframe region of Gag-Pol inhibit the HIV-1 protease. Biochemistry 37:2105-2110

    Article  Google Scholar 

  • Louis JM, Clore GM, Gronenborn AM (1999) Autoprocessing of HIV-1 protease is tightly coupled to protein folding. Nature Struct Biol 6:868-875

    Article  PubMed  CAS  Google Scholar 

  • Luukkonen BGM, Tan W, Fenyö EM, Schwartz S (1995) Analysis of cross reactivity of retrovirus proteases using a vaccinia virus-T7 RNA polymerase-based expression system. J Gen Virol 76:2169-2180

    Article  PubMed  Google Scholar 

  • Meiering CD, Comstock KE, Linial Ml (2000) Multiple integrations of human foamy virus in persistently infected human erythroleukemia cells. J Virol 74:1718-1726

    Article  PubMed  CAS  Google Scholar 

  • Merkulov GV, Swiderek KM, Brachmann B, Boeke JD (1996) A critical proteolytic cleavage site near the C-terminus of the yeast retrotransposon Tyl Gag protein. J Virol 70:5548-5556

    PubMed  CAS  Google Scholar 

  • Morozov VA, Copeland TD, Nagashima K, Gonda MA, Oroszlan S (1997) Protein composition and morphology of human foamy virus intracellular cores and extracellular particles. Virology 228:307-317

    Article  PubMed  CAS  Google Scholar 

  • Netzer K-O, Rethwilm A, Maurer B, ter Meulen V (1990). Identification of the major immunogenic structural proteins of human foamy virus. J Gen Virol 71:1237-1241

    Article  PubMed  CAS  Google Scholar 

  • Netzer K-O, Schliephake A, Maurer B, Watanabe R, Aguzzi, A, Rethwilm A (1993) Identification of pol-related gene products of human foamy virus. Virology 192:336-338

    Article  PubMed  CAS  Google Scholar 

  • Pahl A, Flügel RM (1993) Endonucleolytic cleavages and DNA-joining activities of the integration protein of human foamy virus. J Virol 67:5426-5434

    PubMed  CAS  Google Scholar 

  • Parker and Hunter (2001) XXX. Proc Natl Acad Sci USA 98: 14361

    Google Scholar 

  • Paulus C, Hellebrand S, Tessmer U, Wolf H, Kräusslich H-G, Wagner R (1999) Competitive inhibition of HIV-1 protease by the Gag-Pol transframe protein. J Biol Chem 274:21539-21543

    Article  PubMed  CAS  Google Scholar 

  • Pfrepper K-I, Rackwitz H-R, Schnölzer M, Heid H, Löchelt M, Flügel RM (1998) Molecular characterization of proteolytic processing of the Pol proteins of human foamy virus reveals novel features of the viral protease. J Virol 72:7648-7652

    PubMed  CAS  Google Scholar 

  • Pfrepper K-I, Rackwitz H-R, Schnölzer M, Heid H, Löchelt M, Flügel, RM (1997) Expression and molecular characterization of an enzymatically active recombinant human spumaretrovirus protease. Biochem Biophys Res Commun 237:548-553

    Article  PubMed  CAS  Google Scholar 

  • Pfrepper K-I, Rackwitz H-R, Schnölzer M, Heid H, Löchelt M, Flügel RM (1999) Molecular characterization of proteolytic processing of the Gag proteins of human spumavirus J Virol 73:7907-7911

    PubMed  CAS  Google Scholar 

  • Pfrepper K-I (1999) Molecular characterization of the viral protease and proteolytic processing of the Gag and Pol proteins of the human spumaretrovirus. PhD thesis, Faculty of Biology, University of Heidelberg

    Google Scholar 

  • Pfrepper K-I, Reed J, Rackwitz H-R, Schnölzer M, Flügel RM (2000) Characterization of peptide substrates and viral enzyme that affect the cleavage site specificity of the human spumaretrovirus proteinase. Virus Genes 22:61-72

    Article  Google Scholar 

  • Rose JR, Salto R, Craik CS (1993) Regulation of autoproteolysis of the HIV-1 and HIV-2 proteases with engineered amino acid substitutions. J Biol Chem 268:11393-11945

    Google Scholar 

  • Rost B, Sander C (1994) Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 9.55-72

    Article  Google Scholar 

  • Sheng N, Petit SC, Tritch RJ, Ozturk DH, Rayner MM, Swanstrom R, Erickson-Virtanen S (1997) Determinants of the human immunodeficiency virus type 1 p15NCRNA interaction that affect enhanced cleavage by the viral protease. J Virol 71:5723-5732

    PubMed  CAS  Google Scholar 

  • Tobaly-Tapiero J, Santillana-Hayat M, Giron M-L, Guillemin MC, Rozain F, Perks J, Emanuel-Ravier R (1990) Molecular differences between two immunologically related spumaretroviruses: the human prototype HSRV and the chimpanzee isolate SFV6. AIDS Res Human Retrovir 6:951-957

    Article  CAS  Google Scholar 

  • Tobaly-Tapiero J, Bittoun P, Neves M, Guillemin MC, Lecellier C-H, Puvion-Dutilleul F, Gicquel B, Zientara S, Giron M-L, de The H, Saïb A (2000) Isolation and characterization of an equine foamy virus. J Virol 74:4064-4077

    Article  PubMed  CAS  Google Scholar 

  • Vogt and Eisenman (1973) Interaction of a large polypeptide precursor of avian oncornavirus Gag protein. Proc Natl Acad Sci USA 70:1734-1738

    Article  Google Scholar 

  • Vogt VM (1997) Proteolytic processing and particle maturation. Curr Topics Microbiol Immunol 214:95-131

    Google Scholar 

  • Winkler I, Bodem J, Haas L, Zemba M, Flower RT, Delius H, Flügel RM, Löchelt M(1997). Characterization of the genome of feline foamy virus and its proteins shows distinct features different from primate spumaviruses. J Virol 71:67276741

    Google Scholar 

  • Wlodawer A, Erickson J (1993) Structure-based inhibitors of HIV-1. Annu Rev Biochem 62.543-585

    Article  PubMed  CAS  Google Scholar 

  • Wlodawer A, Gustchina A, Reshetnikova L, Lubkowski J, Zdanov A, Hui YH, Angleton L, Farmerie WG, Goodenow MM, Bhatt D, Zhang L, Dunn BM (1995) Structure of an inhibitor complex of the proteinase from feline immunodeficiency virus. Nat Struct Biol 2:480-488

    Article  PubMed  CAS  Google Scholar 

  • Wlodawer A, Gustchina A (2000) Structural and biochemical studies of retroviral proteases. Biochim Biophys Acta 1477:16-34

    Article  PubMed  CAS  Google Scholar 

  • Wolfe MS, Xia W, Ostazewsli BL, Diehl, Kimberly WT, Selkoe DJ (1999) Two trans-membrane aspartates in presenilin-1 required for presenilin endoproteolysis and y-secretase activity. Nature 398:513-517

    Article  PubMed  CAS  Google Scholar 

  • Yan R, Bienkowski MJ, Shuck ME, Miao, H, Tory MC, Pauley AM, Brashler JR, Stratman NC, Matthew WR, Buhl AE, Carter DB, Tomaselli AG, Parodi LA, Heinrikson RL, Gurney ME (1999) Membrane-anchored aspartyl protease with Alzheimer's disease y-secretase activity. Nature 402,:531-537

    Google Scholar 

  • Yu SF, Baldwin DN, Gwynn SR, Yendapalli S, Linial ML (1996) Human foamy virus replication¡ªa pathway distinct from that of retroviruses and hepadnaviruses. Science 271:1579-1582

    Article  PubMed  CAS  Google Scholar 

  • Yu, S.F., Linial, M., L. (1993) Analysis of the role of the bel and bet open reading frames of the human foamy virus by using a new quantitative assay. J Virol 67:6618-6624

    PubMed  CAS  Google Scholar 

  • Zemba M, Wilk T, Rutten T, Wagner A, Flügel RM, Löchelt M (1998). The carboxyterminal p3Gag domain of the human foamy virus Gag precursor is required for efficient virus infectivity. Virology 247:7-13

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flügel, R.M., Pfrepper, KI. (2003). Proteolytic Processing of Foamy Virus Gag and Pol Proteins. In: Rethwilm, A. (eds) Foamy Viruses. Current Topics in Microbiology and Immunology, vol 277. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55701-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55701-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62934-1

  • Online ISBN: 978-3-642-55701-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics