Skip to main content

Synchrotron Radiation and Chemistry: Studies of Materials for Renewable Energy Sources

  • Chapter
  • First Online:
Synchrotron Radiation

Abstract

We present an overview of selected applications of synchrotron radiation methods to topical chemical research. The analysis is limited to the studies on materials for renewable energy sources, focussing on topics peculiar to chemical research, such as reactivity and synthesis routes; in particular, the paper takes into account subjects having some relevance for the production and storage of energy based on hydrogen. Hydrogen production and storage are taken into account in the sections concerning: (i) Dye-sensitized solar cells, (ii) Metal-organic frameworks and (iii) Hydrides for hydrogen storage; production of energy by fuel cell devices is treated in (iv) Oxide ion and proton conductors and in (v) Electrodes for fuel cells. These arguments allowed to give a coherent outline of the involvement of synchrotron radiation techniques in traditional branches of chemistry such as inorganic and organic chemistry, catalysis and electrochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.R.. Long, O.M. Yaghi (eds.), The pervasive chemistry of metal organic frameworks. Chem. Soc. Rev. 38(5), 1201–1508 (2009)

    Google Scholar 

  2. J.R. Long, O.M. Yaghi, Chem. Soc. Rev. 38, 1213–1214 (2009)

    Article  Google Scholar 

  3. S. Bordiga, F. Bonino, K.P. Lillerud, C. Lamberti, Chem. Soc. Rev. 39, 4885–4927 (2010)

    Article  Google Scholar 

  4. F. Millange, C. Serre, N. Guillou, G. Férey, R.I. Walton, Angew. Chem. Int. Ed. 47, 4100–4105 (2008)

    Article  Google Scholar 

  5. J.L.C. Rowsell, O.M. Yaghi, Angew. Chem. Int. Ed. 44, 4670–4679 (2005)

    Article  Google Scholar 

  6. Y. Kubota, M. Takata, R. Matsuda, R. Kitaura, S. Kitagawa, K. Kato, M. Sakata, T.C. Kobayashi, Angew. Chem. Int. Ed. 44, 920–923 (2005)

    Article  Google Scholar 

  7. S. Chavan, J.G. Vitillo, D. Gianolio, O. Zavorotynska, B. Civalleri, S. Jakobsen, M.H. Nilsen, L. Valenzano, C. Lamberti, K.P. Lillerud, S. Bordiga, Phys. Chem. Chem. Phys. 14, 1614–1626 (2012)

    Article  Google Scholar 

  8. R.M.P. Colodrero, K.E. Papathanasiou, N. Stavgianoudaki, P. Olivera-Pastor, E.R. Losilla, M.A.G. Aranda, L. León-Reina, J. Sanz, I. Sobrados, D. Choquesillo-Lazarte, J.M. García-Ruiz, P. Atienzar, F. Rey, K.D. Demadis, A. Cabeza, Chem. Mater. 24, 3780–3792 (2012)

    Google Scholar 

  9. A. Morozan, F. Jaouen, Energy Environ. Sci. 5, 9269–9290 (2012)

    Article  Google Scholar 

  10. V.G. Ponomareva, K.A. Kovalenko, A.P. Chupakhin, D.N. Dybtsev, E.S. Shutova, V.P. Fedin, J. Am. Chem. Soc. 134, 15640–15643 (2012)

    Article  Google Scholar 

  11. M. Sadakiyo, H. Okawa, A. Shigematsu, M. Ohba, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 134, 5472–5475 (2012)

    Article  Google Scholar 

  12. S. Orimo, Y. Nakamori, J.R. Eliseo, A. Züttel, C.M. Jensen, Chem. Rev. 107, 4111–4132 (2007)

    Article  Google Scholar 

  13. D.B. Ravnsbæk, Y. Filinchuk, R. Cerný, T.R. Jensen, Z. Kristallogr. 225, 557–569 (2010)

    Article  Google Scholar 

  14. R. Černý, Y. Filinchuk, Z. Kristallogr. 226, 882–891 (2011)

    Article  Google Scholar 

  15. J. Soulie, G. Renaudin, R. Cerny, K. Yvon, J. Alloys Compd. 346, 200–205 (2002)

    Article  Google Scholar 

  16. Y. Filinchuk, D. Chernyshov, R. Cerny, J. Phys. Chem. 112, 10579–10584 (2008)

    Google Scholar 

  17. Y. Filinchuk, B. Richter, T.R. Jensen, V. Dmitriev, D. Chernyshov, H. Hagemann, Angew. Chem. Int. Ed. 50, 11162–11166 (2011)

    Article  Google Scholar 

  18. L.H. Rude, T.K. Nielsen, D.B. Ravnsbæk, U. Bösenberg, M.B. Ley, B. Richter, L.M. Arnbjerg, M. Dornheim, Y. Filinchuk, F. Besenbacher, T.R. Jensen, Phys. Status Solidi A 208, 1754–1773 (2011)

    Article  Google Scholar 

  19. D.B. Ravnsbæk, L.H. Sørensen, Y. Filinchuk, F. Besenbacher, T.R. Jensen, Angew. Chem. Int. Ed. 51, 3582–3586 (2012)

    Google Scholar 

  20. L. Mosegaard, B. Moller, J. Jorgensen, Y. Filinchuk, Y. Cerenius, J.C. Hanson, E. Dimasi, F. Besenbacher, T.R. Jensen, J. Phys. Chem. C 112, 1299–1303 (2008)

    Article  Google Scholar 

  21. O. Friedrichs, D. Martínez-Martínez, G. Guilera, J.C. Sánchez López, A. Fernández, J. Phys. Chem. C 111, 10700–10706 (2007)

    Google Scholar 

  22. E. Deprez, M.A. Muñoz-Màrquez, M.A. Roldàn, C. Prestipino, F.J. Palomares, C. Bonatto minella, U. Bösenberg, M. Dornheim, R. Bormann, A.J. Fernàndez, J. Phys. Chem. C 114, 3309–3317 (2010)

    Google Scholar 

  23. H.W. Brinks, C.M. Jensen, S.S. Srinivasan, B.C. Hauback, D. Blanchard, K. Murphy, J. Alloys Compd. 376, 215–221 (2004)

    Article  Google Scholar 

  24. H.W. Brinks, B.C. Hauback, S.S. Srinivasan, C.M. Jensen, J. Phys. Chem. B 109, 15780–15785 (2005)

    Google Scholar 

  25. S. Chaudhuri, J. Graetz, A. Ignatov, J.J. Reilly, J.T. Muckerman, J. Am. Chem. Soc. 128, 11404–11415 (2006)

    Article  Google Scholar 

  26. B. O’Regan, M. Grätzel, Nature 353, 737–740 (1991)

    Article  Google Scholar 

  27. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595–6663 (2010)

    Article  Google Scholar 

  28. D.F. Pickup, I. Zegkinoglou, B. Ballesteros, C.R. Ganivet, J.M. García-lastra, P.L. Cook, P.S. Johnson, C. Rogero, de F. Groot, A. Rubio, de la G. Torre, J.E. Ortega, F.J. Himpsel, J. Phys. Chem. C 117, 4410–4420 (2013)

    Google Scholar 

  29. P. Palmgren, K. Nilson, S. Yu, F. Hennies, T. Angot, C.I. Nlebedim, J.-M. Layet, G. Le Lay, M. Göthelid, J. Phys. Chem. C 112, 5972–5977 (2008)

    Article  Google Scholar 

  30. J.M. Pringle, Phys. Chem. Chem. Phys. 15, 1339–1351 (2013)

    Article  Google Scholar 

  31. R. Schölin, M.H. Karlsson, S.K. Eriksson, H. Siegbahn, E.M.J. Johansson, H. Rensmo, J. Phys. Chem. C 116, 26300–26305 (2012)

    Article  Google Scholar 

  32. R. Hock, T. Mayer, W. Jaegermann, J. Phys. Chem. C 116, 18146–18154 (2012)

    Article  Google Scholar 

  33. F. Labat, T. Le Bahers, I. Ciofini, C. Adamo, Acc. Chem. Res. 45, 1268–1277 (2012)

    Article  Google Scholar 

  34. J. Larminie, A. Dicks, Fuel Cell Systems Explained (Wiley, Chichester, 2003), pp. 163–226

    Book  Google Scholar 

  35. R. Ali, M. Yashima, Y. Matsushita, H. Yoshioka, K. Ohoyama, F. Izumi, Chem. Mater. 20, 5203–5208 (2008)

    Article  Google Scholar 

  36. R. Ali, M. Yashima, Y. Matsushita, H. Yoshioka, F. Izumi, J. Solid State Chem. 182, 2846–2851 (2009)

    Article  ADS  Google Scholar 

  37. C.D. Ling, W. Miller, M.R. Johnson, D. Richard, S. Rols, J. Madge, I.R. Evans, Chem. Mater. 24, 4607–4614 (2012)

    Article  Google Scholar 

  38. X. Kuang, J.L. Payne, J.D. Farrell, M.R. Johnson, I.R. Evans, Chem. Mater. 24, 2162–2167 (2012)

    Article  Google Scholar 

  39. Z.D. Apostolov, P. Sarin, R.P. Haggerty, W.M. Kriven, J. Am. Ceram. Soc. 96, 987–994 (2013)

    Article  Google Scholar 

  40. F. Giannici, D. Messana, A. Longo, A. Martorana, J. Phys. Chem. C 115, 298–304 (2011)

    Article  Google Scholar 

  41. F. Giannici, M. Shirpour, A. Longo, A. Martorana, R. Merkle, J. Maier, Chem. Mater. 23, 2994–3002 (2011)

    Article  Google Scholar 

  42. X. Kuang, M.A. Green, H. Niu, P. Zajdel, C. Dickinson, J.B. Claridge, L. Jantsky, M.J. Rosseinsky, Nat. Mat. 7, 498–504 (2008)

    Google Scholar 

  43. L. Malavasi, C. Tealdi, C. Ritter, V. Pomjakushin, F. Gozzo, Y. Diaz-Fernandez, Chem. Mater. 23, 1323–1330 (2011)

    Article  Google Scholar 

  44. M. Scavini, M. Coduri, M. Allieta, M. Brunelli, C. Ferrero, Chem. Mater. 24, 1338–1345 (2012)

    Article  Google Scholar 

  45. A. Mancini, J.F. Shin, A. Orera, P.R. Slater, C. Tealdi, Y. Ren, K.L. Page, L. Malavasi, Dalton Trans. 41, 50–53 (2012)

    Google Scholar 

  46. S. Yamazaki, T. Matsui, T. Ohashi, Y. Arita, Solid State Ionics 136–137, 913–920 (2000)

    Article  Google Scholar 

  47. P. Lupetin, F. Giannici, G. Gregori, A. Martorana, J. Maier, J. Electrochem. Soc. 159, B417–B425 (2012)

    Article  Google Scholar 

  48. P. Duran, F. Capel, C. Moure, A.R. Gonzalez-Elipe, A. Caballero, M.A. Bañares, J. Electrochem. Soc. 146, 2425–2434 (1999)

    Article  Google Scholar 

  49. K.D. Kreuer, S. Adams, W. Münch, A. Fuchs, U. Klock, J. Maier, Solid State Ionics 145, 295–306 (2001)

    Article  Google Scholar 

  50. F. Giannici, A. Longo, K.D. Kreuer, A. Balerna, A. Martorana, Solid State Ionics 181, 122–125 (2010)

    Article  Google Scholar 

  51. F. Giannici, A. Longo, A. Balerna, K.D. Kreuer, A. Martorana, Chem. Mater. 19, 5714–5720 (2007)

    Article  Google Scholar 

  52. F. Giannici, A. Longo, A. Balerna, K.D. Kreuer, A. Martorana, Chem. Mater. 21, 2641–2649 (2009)

    Article  Google Scholar 

  53. A. Longo, F. Giannici, A. Balerna, C. Ingrao, F. Deganello, A. Martorana, Chem. Mater. 18, 5782–5788 (2006)

    Article  Google Scholar 

  54. F. Giannici, A. Longo, F. Deganello, A. Balerna, A.S. Arico’, A. Martorana, Solid State Ionics 178, 587–591 (2007)

    Article  Google Scholar 

  55. F. Giannici, A. Longo, A. Balerna, A. Martorana, Chem. Mater. 21, 597–603 (2009)

    Article  Google Scholar 

  56. F. Giannici, M. Shirpour, A. Longo, A. Martorana, R. Merkle, J. Maier, Chem. Mater. 23, 2994–3002 (2011)

    Article  Google Scholar 

  57. E. Di Bartolomeo, A. D’Epifanio, C. Pugnalini, F. Giannici, A. Longo, A. Martorana, S. Licoccia, J. Power Sources 199, 201–206 (2012)

    Article  Google Scholar 

  58. J. Larminie, A. Dicks, Fuel Cell Systems Explained (Wiley, Chichester, 2003)

    Book  Google Scholar 

  59. R. Viswanathan, R. Liu, E.S. Smotkin, Rev. Sci. Instrum. 73, 2124–2127 (2002)

    Article  ADS  Google Scholar 

  60. S. Stoupin, E.-H. Chung, S. Chattopadhyay, C.U. Segre, E.S. Smotkin, J. Phys. Chem. B 110, 9932–9938 (2006)

    Google Scholar 

  61. E.A. Lewis, I. Kendrick, Q. Jia, C. Grice, C.U. Segre, E.S. Smotkin, Electrochim. Acta 56, 8827–8832 (2011)

    Article  Google Scholar 

  62. A.E. Russell, A. Rose, Chem. Rev. 104, 4613–4636 (2004)

    Article  Google Scholar 

  63. N. Ishiguro, T. Saida, T. Uruga, S. Nagamatsu, O. Sekizawa, K. Nitta, T. Yamamoto, S. Ohkoshi, Y. Iwasawa, T. Yokoyama, M. Tada, ACS Catal. 2, 1319–1330 (2012)

    Article  Google Scholar 

  64. D. Friebel, V. Viswanathan, D.J. Miller, T. Anniyev, H. Ogasawara, A.H. Larsen, C.P. O’Grady, J.K. Nørskov, A. Nilsson, J. Am. Chem. Soc. 134, 9664–9671 (2012)

    Google Scholar 

  65. E.V. Tsipis, V.V. Kharton, J. Solid State Electrochem. 12, 1367–1391 (2008)

    Article  Google Scholar 

  66. K. Hamamoto, T. Suzuki, B. Liang, T. Yamaguchi, H. Sumi, Y. Fujishiro, B. Ingram, A.J. Kropf, J.D. Carter, J. Power Sources 222, 15–20 (2013)

    Article  Google Scholar 

  67. D.N. Mueller, R.A. De Souza, J. Brendt, D. Samuelis, M. Martin, J. Mater. Chem. 19, 1960–1963 (2009)

    Article  Google Scholar 

  68. A. Piovano, G. Agostini, A.I. Frenkel, T. Bertier, C. Prestipino, M. Ceretti, W. Paulus, C. Lamberti, J. Phys. Chem. C 115, 1311–1322 (2011)

    Article  Google Scholar 

  69. R.J. Woolley, B.N. Illy, M.P. Ryan, S.J. Skinner, J. Mater. Chem. 21, 18592–18596 (2011)

    Article  Google Scholar 

  70. R. Sayers, J.E. Parker, C.C. Tang, S.J. Skinner, J. Mater. Chem. 22, 3536–3543 (2012)

    Article  Google Scholar 

  71. D. Liu, J. Almer, Appl. Phys. Lett. 94, 224106 (2009)

    Article  ADS  Google Scholar 

  72. A. Hagen, M.L. Traulsen, W. Kiebach, B.S. Johansen, J. Synchrotron Rad 19, 400–407 (2012)

    Article  Google Scholar 

  73. B. Bozzini, M.K. Abyaneh, M. Amati, A. Gianoncelli, L. Gregoratti, B. Kaulich, M. Kiskinova, Chem. Eur. J. 18, 10196–10210 (2012)

    Article  Google Scholar 

  74. L.F.J. Piper, A.R.H. Preston, S.W. Cho, A. De Masi, B. Chen, J. Laverock, K.E. Smith, L.J. Miara, J.N. Davis, S.N. Basu, U. Pal, S. Gopalan, L. Saraf, T. Kaspar, A.Y. Matsuura, P.A. Glans, J.H. Guo, J. Electrochem. Soc. 158, B99–B105 (2011)

    Article  Google Scholar 

  75. A. McDaniel, F. El Gabaly, E. Akhadov, R.L. Farrow, K.F. McCarty, M.A. Linne, S.C. Decaluwe, C. Zhang, B. Eichhorn, G.S. Jackson, Z. Liu, M. Grass, Z. Hussain, H. Bluhm, ECS Trans. 25, 335–343 (2009)

    Article  Google Scholar 

  76. K. Shinoda, S. Suzuki, K. Yashiro, J. Mizusaki, T. Uruga, H. Tanida, H. Toyokawa, Y. Terada, M. Takagaki, Surf. Interface Anal. 42, 1650–1654 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Martorana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martorana, A., Giannici, F., Longo, A. (2015). Synchrotron Radiation and Chemistry: Studies of Materials for Renewable Energy Sources. In: Mobilio, S., Boscherini, F., Meneghini, C. (eds) Synchrotron Radiation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55315-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55315-8_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55314-1

  • Online ISBN: 978-3-642-55315-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics