Skip to main content

Strategies for Tracking the Origin and Fate of Odontoblasts and Pulp Cell Progenitors

  • Chapter
  • First Online:
Book cover The Dental Pulp
  • 2855 Accesses

Abstract

Odontoblasts are exclusively dentin-producing cells that are morphologically and functionally distinct from osteoblasts secreting the bone matrix. Although much has been learned about the cellular and molecular mechanisms that regulate the progression of hematopoietic population and osteoprogenitor cells into fully differentiated cell types, not much is known about the regulatory mechanisms involved in the differentiation program of odontoblasts. This has been due at least in part to difficulties in obtaining homogenous populations of progenitor cells for molecular analysis and the lack of suitable markers for identifying the intermediate stages of odontoblast differentiation.

In addition odontoblasts are present throughout the life of the tooth. The aim of pulp therapy is to maintain the vitality of injured dental pulp and establish an environment that enables the remaining pulp to regenerate the dental-pulp complex. Despite recent advances in research on the regenerative potential of dental pulp complex, the origin/identity of the progenitor cells and signaling pathways involved in reparative dentinogenesis remains elusive.

In this section, we review current advances in methods that have allowed further understanding of the cellular and molecular mechanisms involved in physiological and reparative dentinogenesis as well as stem cell population in the pulp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lisi S, Peterkova R, Peterka M, Vonesch JL, Ruch JV, Lesot H. Tooth morphogenesis and pattern of odontoblast differentiation. Connect Tissue Res. 2003;44 Suppl 1:167–70.

    Article  PubMed  Google Scholar 

  2. Tziafas D, Kodonas K. Differentiation potential of dental papilla, dental pulp, and apical papilla progenitor cells. J Endod. 2010;36(5):781–9.

    Article  PubMed  Google Scholar 

  3. Thesleff I, Keranen S, Jernvall J. Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res. 2001;15:14–8.

    Article  PubMed  Google Scholar 

  4. Arana-Chavez VE, Massa LF. Odontoblasts: the cells forming and maintaining dentine. Int J Biochem Cell Biol. 2004;36(8):1367–73.

    Article  PubMed  Google Scholar 

  5. Ruch JV, Lesot H, Begue-Kirn C. Odontoblast differentiation. Int J Dev Biol. 1995;39(1):51–68.

    PubMed  Google Scholar 

  6. Nanci A. Ten Cate’s oral histology: development, structure and function. 7th ed. Maryland Heights, Missouri: Mosby; 2008.

    Google Scholar 

  7. Bleicher F. Odontoblast physiology. Exp Cell Res. 2013. (Epub ahead of print).

    Google Scholar 

  8. Qin C, Baba O, Butler WT. Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol Med. 2004;15(3):126–36.

    Article  PubMed  Google Scholar 

  9. Lesot H, Lisi S, Peterkova R, Peterka M, Mitolo V, Ruch JV. Epigenetic signals during odontoblast differentiation. Adv Dent Res. 2001;15:8–13.

    Article  PubMed  Google Scholar 

  10. Bryder D, Rossi DJ, Weissman IL. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol. 2006;169(2):338–46.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Abe T, Fujimori T. Reporter mouse lines for fluorescence imaging. Dev Growth Differ. 2013;55(4):390–405.

    Article  PubMed  Google Scholar 

  12. Hoffman RM. Fluorescent proteins as visible in vivo sensors. Prog Mol Biol Transl Sci. 2013;113:389–402.

    Article  PubMed  Google Scholar 

  13. Hadjantonakis AK, Macmaster S, Nagy A. Embryonic stem cells and mice expressing different GFP variants for multiple non-invasive reporter usage within a single animal. BMC Biotechnol. 2002;2:11.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Hadjantonakis AK, Nagy A. FACS for the isolation of individual cells from transgenic mice harboring a fluorescent protein reporter. Genesis. 2000;27(3):95–8.

    Article  PubMed  Google Scholar 

  15. Balic A, Mina M. Analysis of developmental potentials of dental pulp in vitro using GFP transgenes. Orthod Craniofac Res. 2005;8(4):252–8.

    Article  PubMed  Google Scholar 

  16. Bilic-Curcic I, Kronenberg M, Jiang X, Bellizzi J, Mina M, Marijanovic I, et al. Visualizing levels of osteoblast differentiation by a two-color promoter-GFP strategy: Type I collagen-GFPcyan and osteocalcin-GFPtpz. Genesis. 2005;43(2):87–98.

    Article  PubMed  Google Scholar 

  17. Jiang X, Kalajzic Z, Maye P, Braut A, Bellizzi J, Mina M, et al. Histological analysis of GFP expression in murine bone. J Histochem Cytochem. 2005;53(5):593–602.

    Article  PubMed  Google Scholar 

  18. Rowe DW. Viewing problems in bone biology from the perspective of lineage identification. J Musculoskelet Neuronal Interact. 2005;5(4):350–2.

    PubMed  Google Scholar 

  19. Kalajzic I, Braut A, Guo D, Jiang X, Kronenberg MS, Mina M, et al. Dentin matrix protein 1 expression during osteoblastic differentiation, generation of an osteocyte GFP-transgene. Bone. 2004;35(1):74–82.

    Article  PubMed  Google Scholar 

  20. Kalajzic I, Kalajzic Z, Kaliterna M, Gronowicz G, Clark SH, Lichtler AC, et al. Use of type I collagen green fluorescent protein transgenes to identify subpopulations of cells at different stages of the osteoblast lineage. J Bone Miner Res. 2002;17(1):15–25.

    Article  PubMed  Google Scholar 

  21. Kalajzic Z, Li H, Wang LP, Jiang X, Lamothe K, Adams DJ, et al. Use of an alpha-smooth muscle actin GFP reporter to identify an osteoprogenitor population. Bone. 2008;43(3):501–10.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kalajzic Z, Liu P, Kalajzic I, Du Z, Braut A, Mina M, et al. Directing the expression of a green fluorescent protein transgene in differentiated osteoblasts: comparison between rat type I collagen and rat osteocalcin promoters. Bone. 2002;31(6):654–60.

    Article  PubMed  Google Scholar 

  23. Balic A, Aguila HL, Mina M. Identification of cells at early and late stages of polarization during odontoblast differentiation using pOBCol3.6GFP and pOBCol2.3GFP transgenic mice. Bone. 2010;47(5):948–58.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Balic A, Mina M. Characterization of progenitor cells in pulps of murine incisors. J Dent Res. 2010;89(11):1287–92.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Balic A, Mina M. Identification of secretory odontoblasts using DMP1-GFP transgenic mice. Bone. 2011;48(4):927–37.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Mina M, Braut A. New insight into progenitor/stem cells in dental pulp using Col1a1-GFP transgenes. Cells Tissues Organs. 2004;176(1–3):120–33.

    Article  PubMed  Google Scholar 

  27. Braut A, Kollar EJ, Mina M. Analysis of the odontogenic and osteogenic potentials of dental pulp in vivo using a Col1a1-2.3-GFP transgene. Int J Dev Biol. 2003;47(4):281–92.

    PubMed  Google Scholar 

  28. Braut A, Kalajzic I, Kalajzic Z, Rowe DW, Kollar EJ, Mina M. Col1a1-GFP transgene expression in developing incisors. Connect Tissue Res. 2002;43(2–3):216–9.

    Article  PubMed  Google Scholar 

  29. Sloan AJ, Smith AJ. Stem cells and the dental pulp: potential roles in dentine regeneration and repair. Oral Dis. 2007;13(2):151–7.

    Article  PubMed  Google Scholar 

  30. Sloan AJ, Waddington RJ. Dental pulp stem cells: what, where, how? Int J Paediatr Dent. 2009;19(1):61–70.

    Article  PubMed  Google Scholar 

  31. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97(25):13625–30.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003;100(10):5807–12.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, et al. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod. 2008;34(8):962–9.

    Article  PubMed  Google Scholar 

  34. Sakai VT, Zhang Z, Dong Z, Neiva KG, Machado MA, Shi S, et al. SHED differentiate into functional odontoblasts and endothelium. J Dent Res. 2010;89(8):791–6.

    Article  PubMed  Google Scholar 

  35. Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88(9):792–806.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3(4):393–403.

    PubMed  Google Scholar 

  37. Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. 2008;2(4):313–9.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Dimarino AM, Caplan AI, Bonfield TL. Mesenchymal stem cells in tissue repair. Front Immunol. 2013;4:201.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Feng J, Mantesso A, De Bari C, Nishiyama A, Sharpe PT. Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci U S A. 2011;108(16):6503–8.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Feng J, Mantesso A, Sharpe PT. Perivascular cells as mesenchymal stem cells. Expert Opin Biol Ther. 2010;10(10):1441–51.

    Article  PubMed  Google Scholar 

  41. Kerkis I, Caplan AI. Stem cells in dental pulp of deciduous teeth. Tissue Eng Part B Rev. 2012;18(2):129–38.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Crisan M, Corselli M, Chen WC, Peault B. Perivascular cells for regenerative medicine. J Cell Mol Med. 2012;16(12):2851–60.

    Article  PubMed  Google Scholar 

  43. Crisan M, Corselli M, Chen CW, Peault B. Multilineage stem cells in the adult: a perivascular legacy? Organogenesis. 2011;7(2):101–4.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Blanpain C, Simons BD. Unravelling stem cell dynamics by lineage tracing. Nat Rev Mol Cell Biol. 2013;14(8):489–502.

    Article  PubMed  Google Scholar 

  45. Blanpain C. Tracing the cellular origin of cancer. Nat Cell Biol. 2013;15(2):126–34.

    Article  PubMed  Google Scholar 

  46. Liu X, Driskell RR, Engelhardt JF. Stem cells in the lung. Methods Enzymol. 2006;419:285–321.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Frozoni M, Balic A, Sagomonyants K, Zaia AA, Line SR, Mina M. A feasibility study for the analysis of reparative dentinogenesis in pOBCol3.6GFPtpz transgenic mice. Int Endod J. 2012;45(10):907–14.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Ishikawa Y, Ida-Yonemochi H, Suzuki H, Nakakura-Ohshima K, Jung HS, Honda MJ, et al. Mapping of BrdU label-retaining dental pulp cells in growing teeth and their regenerative capacity after injuries. Histochem Cell Biol. 2010;134(3):227–41.

    Article  PubMed  Google Scholar 

  49. Mutoh N, Nakatomi M, Ida-Yonemochi H, Nakagawa E, Tani-Ishii N, Ohshima H. Responses of BrdU label-retaining dental pulp cells to allogenic tooth transplantation into mouse maxilla. Histochem Cell Biol. 2011;136(6):649–61.

    Article  PubMed  Google Scholar 

  50. Onshima H, Nakagawa E, Ida-Yonemochi H. O39-establishment of in vitro culture system for evaluation of the dentin-pulp complex regeneration with special reference to differentiation capacity of the BrdU-label-retaining dental pulp cells. Bull Group Int Rech Sci Stomatol Odontol. 2010;49(3):92.

    Google Scholar 

  51. Saito K, Ishikawa Y, Nakakura-Ohshima K, Ida-Yonemochi H, Nakatomi M, Kenmotsu S, et al. Differentiation capacity of BrdU label-retaining dental pulp cells during pulpal healing following allogenic transplantation in mice. Biomed Res. 2011;32(4):247–57.

    Article  PubMed  Google Scholar 

  52. Saito K, Nakatomi M, Ohshima H. Dynamics of bromodeoxyuridine label-retaining dental pulp cells during pulpal healing after cavity preparation in mice. J Endod. 2013;39(10):1250–5.

    Article  PubMed  Google Scholar 

  53. Frozoni M, Zaia AA, Line SR, Mina M. Analysis of the contribution of nonresident progenitor cells and hematopoietic cells to reparative dentinogenesis using parabiosis model in mice. J Endod. 2012;38(9):1214–9.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Drs. Barut, Balic, Frozoni, and Sagomonyants for their hard work in generating the data reported here. I also would like to thank all the individuals who provided reagents, valuable input, and technical assistance in various aspects of these studies including Drs. Rowe and Kalajzic and Mrs. Rodgers for critical review of the manuscript. This work was supported by a grant from National Institutes of Health (NIDCR) to MM (DE016689).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Mina DMD, MSD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mina, M. (2014). Strategies for Tracking the Origin and Fate of Odontoblasts and Pulp Cell Progenitors. In: Goldberg, M. (eds) The Dental Pulp. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55160-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55160-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55159-8

  • Online ISBN: 978-3-642-55160-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics