Skip to main content

Light Water Reactor Design Against External Events

  • Chapter
  • First Online:
The Risks of Nuclear Energy Technology

Part of the book series: Science Policy Reports ((SCIPOLICY))

  • 1761 Accesses

Abstract

LWRs must be designed against earthquakes, air plane crashes, chemical explosions, flooding, tsunamis and tornados. The design of LWRs against earthquakes must meet certain guidelines required by regulatory authorities. These distinguish between the design basis earthquake and the safe shut down earthquake. The design basis earthquake is the highest intensity earthquake which can occur according to scientific findings at the site of the nuclear power plant. In a safe shut down earthquake the fundamental safety functions of the LWR must remain fulfilled. The mechanical loads and stresses acting on nuclear power plants in an earthquake are determined by horizontal and vertical displacements and accelerations as well as the associated frequencies of vibration and the duration of the earthquake. Besides the rules recommended by regulatory authorities also two- and three-dimensional finite-element codes are employed on the mechanical analysis of the plant. Where horizontal or vertical displacements and the resultant stresses are too high, pipings and components may be supported by means of damping elements. Also the entire nuclear plant may be built on thousands of damping elements located in the foundation bottom concrete slab of the reactor building. LWR plants are designed against air plane (military or commercial) crashes into the plant. Impulse models and experiments form the basis for a shock load versus time curve which has to be applied for the design of the plant.

LWRs must also be designed against a given pressure wave resulting from chemical explosions in the vicinity of the plant.

The risk of flooding by a maximum-level flood must be taken into account on the basis of scientific findings about floods for the past 10,000 years. Similar requirements exist for tsunamis and for tornados.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smidt D (1979) Reaktorsicherheitstechnik, Sicherheitssysteme und Störfallanalyse für Leichtwasserreaktoren und Schnelle Brüter. Springer, Berlin

    Google Scholar 

  2. Regulatory Guide 1.60 (1973) Design response spectra for seismic design of nuclear power plants (Revision 1). http://pbadupws.nrc.gov/docs/ML0037/ML003740207.pdf

  3. McGuire RK et al (2001) New seismic design spectra for nuclear power plants. Nucl Eng Des 203:243–257

    Article  Google Scholar 

  4. Regulatory Guide 1.61 (2007), Damping Values for Seismic Design of Nuclear Power Plants (Revision 1). http://www.nrc.gov/reading-rm/doc-collections/reg-guides/power-reactors/rg/01-061/01-061.pdf

  5. Résistance au séisme des installations nucléaires en France. http://fr.wikipedia.org/wiki/R%C3%A9sistance_au_s%C3%A9isme_des_installations_nucl%C3%A9aires_en_France

  6. KTA 2201.1 (1990) Auslegung von Kernkraftwerken gegen seismische Einwirkungen, Teil 1. Grundsätze, Kerntechnischer Ausschuß (KTA). http://www.kta-gs.de/d/regeln/2200/2201_1.pdf

  7. KTA 2201.1 (1990) Auslegung von Kernkraftwerken gegen seismische Einwirkungen; Teil 1: Grundsätze. http://www.kta-gs.de/e/standards/2200/2201_1e_2011_11.pdf

  8. KTA 2201.4 (1990) Auslegung von Kernkraftwerken gegen seismische Einwirkungen – Teil 4: Anforderungen an Verfahren zum Nachweis der Erdbebensicherheit für maschinen- und elektrotechnische Anlagenteile, Fassung 6/90. http://www.kta-gs.de/d/regeln/2200/2201_4_2012_11.pdf

  9. KTA 2201.5 (1996) Auslegung von Kernkraftwerken gegen seismische Einwirkungen – Teil 5: Seismische Instrumentierung, Fassung 06/96. http://www.kta-gs.de/d/regeln/2200/2201_5.pdf

  10. RSK-Leitlinien für Druckwasserreaktoren (1996) Fassung 11.96, BAnz Nr. 214 vom 05.11.1996. http://www.rskonline.de/downloads/8110dwr.pdf

  11. IAEA Safety Guide NS-G-3.3 (2002) Evaluation of seismic hazards for nuclear power plants. International Atomic Energy Agency, Vienna

    Google Scholar 

  12. IAEA Safety Guide NS-G-1.6 (2003) Seismic design and qualification for nuclear power plants. International Atomic Energy Agency, Vienna

    Google Scholar 

  13. DIN 4149 (2005) Bauten in deutschen Erdbebengebieten – Lastannahmen, Bemessung und Ausführung üblicher Hochbauten.

    Google Scholar 

  14. Eurocode 8 (2004) Design of structures for earthquake resistance. http://shop.bsigroup.com/Browse-By-Subject/Eurocodes/Descriptions-of-Eurocodes/Eurocode-8/

  15. Kanai K (1961) An empirical formula for the spectrum of strong earthquake motions. Bull Earthq Res Inst 39:85–95

    MathSciNet  Google Scholar 

  16. Werner SD (1976) Engineering characteristics of earthquake ground motions. Nucl Eng Des 36:367–395

    Article  Google Scholar 

  17. Werner SD (1976) Procedures for developing vibratory ground motion criteria at nuclear plant sites. Nucl Eng Des 36:411–441

    Article  Google Scholar 

  18. Leydecker G (1986) Erdbebenkatalog für die Bundesrepublik Deutschland mit Randgebieten für die Jahre 1000–1981. Geolog. Jg., Hannover E36, p 3–81

    Google Scholar 

  19. Ahorner L, Rosenhauer W (1978) Seismic risk evaluation for the Upper Rhine Graben and its vicinity. J Geophys 44:481–497

    Google Scholar 

  20. Mohrbach L (2011) Unterschiede im gestaffelten Sicherheitskonzept: Vergleich Fukushima Daiichi mit deutschen Anlagen. http://www.kernenergie.de/kernenergie/service/fachzeitschrift-atw/hefte-themen/2011/apr-mai/02_unterschiede-fukushima-deutsche-anlagen.php

  21. Sadegh-Azar H et al (2009) Bautechnische Auslegung von Kernkraftwerken für Erdbeben. Atomwirtschaft 54(12):753–759

    Google Scholar 

  22. Henkel F-O et al (2009) Auslegung der Anlagenteile von Kernkraftwerken gegen Erdbeben – Stand und Tendenzen. Atomwirtschaft 54(12):760–766

    Google Scholar 

  23. Nakamura N et al (2008) Analyses of reactor building by 3D nonlinear FEM models considering basemat uplift for simultaneous horizontal and vertical ground motions. Nucl Eng Des 238:3551–3560

    Article  Google Scholar 

  24. JEAG (1991) Technical guidelines for aseismic design of nuclear power plants. Japan Electric Association Guideline, Ministry of International Trade and Industry, Tokyo

    Google Scholar 

  25. Stellungnahme der RSK (2011) Anlagenspezifische Sicherheitsüberprüfung RSK(SÜ) deutscher Kernkraftwerke unter Berücksichtigung der Ereignisse in Fukushima (16.05.2011)

    Google Scholar 

  26. Forni M (2011) Seismic isolation of nuclear power plants, state of the art and future applications. Seminary at Karlsruhe Institute of Technology IKET, January 2011

    Google Scholar 

  27. Tang Y et al (2011) Seismic isolation for advanced fast reactors. Nucl Technol 173:135–152

    Google Scholar 

  28. Gundremmingen. http://www.kkwgun.de/

  29. Okamura S et al (2009) Seismic isolation design for JSFR –, FR09. Paper No. IAEA-CN-176-08-28P, Kyoto, Japan, 7–11 December 2009

    Google Scholar 

  30. Kröger W (1978) Unterirdische Bauweise von Kernkraftwerken. Informationstagung: Die Sicherheit des Leichtwasserreaktors, Deutsches Atomforum, Mainz

    Google Scholar 

  31. Müller WD (1981) Kernkraftwerke unter die Erde (Leitartikel). Atomwirtschaft 5(81):289

    Google Scholar 

  32. Drittler K et al (1973) Zur Auslegung kerntechnischer Anlagen gegen Einwirkungen von außen, Teilaspekt: Flugzeugabsturz, Bericht IRS-W-7, Dez. 1973. Institut für Reaktorsicherheit der technischen Überwachungs-Vereine e.V. in Köln

    Google Scholar 

  33. Drittler K et al (1976) Calculation of the total force acting upon a rigid wall by projectiles. Nucl Eng Des 37:231–244

    Article  Google Scholar 

  34. Drittler K et al (1976) The force from impact of fast-flying military aircraft upon a rigid wall. Nucl Eng Des 37:245–248

    Article  Google Scholar 

  35. Nachtsheim W et al (1982) Interpretation of results of Meppen slab tests – comparison with parametric investigations. Nucl Eng Des 75:283–290

    Article  Google Scholar 

  36. Riera JD (1968) On the stress analysis of structures subjected to aircraft impact forces. Nucl Eng Des 8:415–426

    Article  Google Scholar 

  37. Riera JD (1980) A critical reappraisal of nuclear power plant safety against accidental aircraft impact. Nucl Eng Des 57:193–206

    Article  Google Scholar 

  38. Ruch D (2010) Bestimmung der Last-Zeit-Funktion beim Aufprall flüssigkeitsgefüllter Stoßkörper. Dissertation, Karlsruhe Institut für Technologie (KIT), Fakultät Bauingenieur-, Geo- und Umweltwissenschaften

    Google Scholar 

  39. Bachmann P et al (1994) Bewertung der Ergebnisse der bei SANDIA durchgeführten japanischen Stoßversuche hinsichtlich der Sicherheit von Kernkraftwerken bei Flugzeugabsturz, Technischer Bericht, Gesellschaft für Anlagen und Reaktorsicherheit (GRS) mbH, 1994

    Google Scholar 

  40. von Riesemann WA et al (1979) Full-scale aircraft impact test for evaluation of impact forces. Part 1: Test plan, test method and test results. In: Transactions of 10th international conference on structural mechanics in reactor technology, p 285–294

    Google Scholar 

  41. IAEA-TECDOC-1391 (2004) Status of advanced light water reactor designs 2004. International Atomic Energy Agency, Vienna

    Google Scholar 

  42. Rebora B et al (1976) Dynamic rupture analyses of reinforced concrete shells. Nucl Eng Des 37:269–297

    Article  Google Scholar 

  43. Wolf JP et al (1978) Response of equipment to aircraft impact. Nucl Eng Des 47:169–193

    Article  Google Scholar 

  44. Stepan J (2009) Validation of aircraft FE model for impact analyses. In: 20th International conference on structural mechanics in reactor technology (SMIRT 20), Espoo, Finland, 9–14 August 2009. SMIRT 20-Division 4, Paper 1929

    Google Scholar 

  45. Stepan J (2007) Large commercial aircraft crash into the light-weight nuclear facility building. In: Transactions, SMIRT 19, Toronto, August 2007

    Google Scholar 

  46. Schlüter F-H (2014) Safety of German light-water reactors in the event of a postulated aircraft impact. In: Kessler G et al (eds) The risks of nuclear energy technology: safety concepts of light water reactors. Springer, Berlin

    Google Scholar 

  47. KTA 2207 (2004) Schutz von Kernkraftwerken gegen Hochwasser, Sicherheitstechnische Regel des KTA (Kerntechnischer Ausschuß), Fassung 11/04. http://www.kta-gs.de/d/regeln/2200/2207n.pdf

  48. Tsunami. http://de.wikipedia.org/wiki/Tsunami

  49. Newmark NM et al (1973) Seismic design spectra for nuclear power plants. J Power Div Am Soc Civ Eng 99:2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kessler, G., Veser, A. (2014). Light Water Reactor Design Against External Events. In: The Risks of Nuclear Energy Technology. Science Policy Reports. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55116-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55116-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55115-4

  • Online ISBN: 978-3-642-55116-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics