Skip to main content

Waste Mechanical Energy Harvesting (I): Piezoelectric Effect

  • Chapter
  • First Online:
Waste Energy Harvesting

Part of the book series: Lecture Notes in Energy ((LNEN,volume 24))

Abstract

Mechanical energy is one of the most ubiquitous energies that can be reused in our surroundings. The sources of mechanical energy can be a vibrating structure, a moving object, and vibration induced by flowing air or water. The energies related to induced vibrations or movement by flow of air and water at large-scale are wind energy and hydroelectric energy, respectively, which are not within the scope of this book. Instead, the mechanical energies here can be classified as so-called “low level” vibrations and movements. Such potential “low-level” vibrations and movements are summarized in Table 2.1 [1] and Table 2.2 [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Roundy, R.K. Wright, J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26, 1131–1144 (2003)

    Google Scholar 

  2. S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications. Measur. Sci. Technol. 17, R175–R195 (2006)

    Google Scholar 

  3. K.A. Cook-Chennault, N.Thambi, A.M. Sastry, Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 043001 (2008)

    Google Scholar 

  4. S.R. Anton, H.A. Sodano, A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, R1–R21 (2007)

    Google Scholar 

  5. S. Priya, Advances in energy harvesting using low profile piezoelectric transducers. J.Electroceram. 19, 167–184 (2007)

    Google Scholar 

  6. C.B. Williams, R.B. Yates, Analysis of a micro-electric generator for microsystems. Sens. Actuators A 52, 8–11 (1996)

    Google Scholar 

  7. P. Glynne-Jones, M.J. Tudor, S.P. Beeby, N.M. White, An electromagnetic, vibration-powered generator for intelligent sensor systems. Sens. Actuators A 110, 344–349 (2004)

    Google Scholar 

  8. D. Arnold, Review of microscale magnetic power generation. IEEE Trans. Magn. 43, 3940–3951 (2007)

    Google Scholar 

  9. P. Mitcheson, P. Miao, B. Start, E. Yeatman, A. Holmes, T. Green, MEMS electrostatic micropower generator for low frequency operation. Sens. Actuators A 115, 523–529 (2004)

    Google Scholar 

  10. Y.B. Jeon, R. Sood, J.H. Jeongand, S. Kim, MEMS power generator with transverse mode thin film PZT. Sens. Actuators A 122, 16–22 (2005)

    Google Scholar 

  11. L. Wang, F.G. Yuan, Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 17, 045009 (2008)

    Google Scholar 

  12. W.J. Choi, Y. Jeon, J.H. Jeong, R. Sood, S.G. Kim, Energy harvesting MEMS device based on thin film piezoelectric cantilevers. J. Electroceram. 17, 543–548 (2006)

    Google Scholar 

  13. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82(4), 797–818 (1999)

    Google Scholar 

  14. D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267–1324 (1998)

    Google Scholar 

  15. L.B. Kong, J. Ma, H.T. Huang, W. Zhu, O.K. Tan, Lead zirconate titanate ceramics derived from oxide mixture treated by a high-energy ball milling process. Mater. Lett. 50, 129–133 (2001)

    Google Scholar 

  16. L.B. Kong, T.S. Zhang, J. Ma, Y.C.F. Boey, Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical techniques. Prog. Mater. Sci. 53(2), 207–322 (2008)

    Google Scholar 

  17. L.E. Cross, R.E. Newnham, in History of ferroelectrics, Ceramics and Civilization, vol 3, ed. by W.D. Kingery. High-Technology Ceramics—Past, Present and Future (American Ceramic Society, Westerville, 1987), pp. 289–305

    Google Scholar 

  18. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)

    Google Scholar 

  19. J. Rodel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)

    Google Scholar 

  20. G. Arlt, The influence of microstructure on the properties of ferroelectric ceramics. Ferroelectrics 104, 217–227 (1990)

    Google Scholar 

  21. A.D. Polli, F.F. Lange, C.G. Levi, C G. Metastability of the fluorite, pyrochlore, and perovskite structures in the PbO-ZrO2-TiO2 system. J. Am. Ceram. Soc. 83(4), 873–881 (2000)

    Google Scholar 

  22. C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81(3), 677–688 (1998)

    Google Scholar 

  23. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press Limited, London, 1971)

    Google Scholar 

  24. I.N. Andryushinan, L.A. Reznichenko, V.A. Alyoshin, L.A. Shilkina, S.V. Titov, V.V. Titov, K.P. Andryushin, S.I. Dudkina, The PZT system (PbZr1−xTixO3, 0.0 ≤ x ≤ 1.0): specific features of recrystallization sintering and microstructures of solid solutions (part 1). Ceram. Int. 39, 753–761 (2013)

    Google Scholar 

  25. B.W. Lee, Synthesis and characterization of compositionally modified PZT by wet chemical preparation from aqueous solution. J. Eur. Ceram. Soc. 24, 925–929 (2004)

    Google Scholar 

  26. S.R. Shannigrahi, F.E.H. Tay, K. Yao, R.N.P. Choudhary, Effect of rare earth (La, Nd, Sm, Eu, Gd, Dy, Er and Yb) ion substitutions on the microstructural and electrical properties of sol-gel grown PZT ceramics. J. Eur. Ceram. Soc. 24, 163–170 (2004)

    Google Scholar 

  27. L.B. Kong, J. Ma, T.S. Zhang, W. Zhu, O.K. Tan, Pb(ZrxTi1−x)O3 ceramics via reactive sintering of partially reacted mixture produced by a high-energy ball milling process. J. Mater. Res. 16(6), 1636–1643 (2001)

    Google Scholar 

  28. N. Izyumskaya, Y.I. Alivov, S.J. Cho, H. Morkoc, H. Lee, Y.S. Kang, Processing, structure, properties, and applications of PZT thin films. Crit. Rev. Solid State Mater. Sci. 32, 111–202 (2007)

    Google Scholar 

  29. L.B. Kong, A new solution method to deposit thick PZT films, unpublished works

    Google Scholar 

  30. B.M. Xu, Y.H. Ye, L.E. Cross, Dielectric properties and field-induced phase switching of lead zirconate titanate stannate antiferroelectric thick films on silicon substrates. J. Appl. Phys. 87, 2507–2515 (2000)

    Google Scholar 

  31. B.M. Xu, L.E. Cross, D. Ravichandran, Synthesis of lead zirconate titanate stannate antiferroelectric thick films by sol-gel processing. J. Am. Ceram. Soc. 82(2), 306–332 (1999)

    Google Scholar 

  32. B.M. Xu, Y.H. Ye, Q.M. Wang, N.G. Pai, L.E. Cross, Effect of compositional variations on electrical properties in phase switching (Pb, La)(Zr, Ti, Sn)O3 thin and thick films. J. Mater. Sci. 35, 6027–6033 (2000)

    Google Scholar 

  33. Z.H. Wang, C.L. Zhao, W.G. Zhu, O.K. Tan, W. Liu, X. Yao, Processing and characterization of Pb(Zr, Ti)O3 thick films on platinum-coated silicon substrate derived from sol-gel deposition. Mater. Chem. Phys. 75, 71–75 (2002)

    Google Scholar 

  34. W.G. Zhu, Z.H. Wang, C.L. Zhao, O.K. Tan, H.H. Hng, Low temperature processing of nanocrystalline lead zirconate titanate (PZT) thick films and ceramics by a modified solgel route. Jpn. J. Appl. Phys. 41, 6969–6975 (2002)

    Google Scholar 

  35. Z.H. Wang, W.G. Zhu, C.L. Zhao, O.K. Tan, Dense PZT thick films derived from sol-gel based nanocomposite process. Mater. Sci. Eng., B 99, 56–62 (2003)

    Google Scholar 

  36. C.L. Zhao, Z. Wang, W.G. Zhu, O.K. Tan, H.H. Hng, Microstructure and properties of PZT53/47 thick films derived from sols with submicron-sized PZT particle. Ceram. Int. 30, 1925–1927 (2004)

    Google Scholar 

  37. Z.H. Wang, W.G. Zhu, C.L. Chao, X.F. Chen, Characterization of composite piezoelectric thick film for MEMS application. Surf. Coat. Technol. 198, 384–388 (2005)

    Google Scholar 

  38. R.G. Kepler, R.A. Anderson, Ferroelectric polymers. Adv. Phys. 41(1), 1–57 (1992)

    Google Scholar 

  39. V.V. Kochervinskii, Piezoelectricity in crystallizing ferroelectric polymers: poly(vinylidene fluoride) and its copolymers (a review). Crystallogr. Rep. 48(4), 649–675 (2003)

    Google Scholar 

  40. T. Furukawa, Piezoelectricity and pyroelectricity in polymers. IEEE Trans. Electr. Insul. 24, 375–394 (1989)

    Google Scholar 

  41. J.F. Tressler, S. Alkoy, A. Dogan, R.E. Newnham, Functional composites for sensors, actuators and transducers. Compos. Part A 30, 477–482 (1999)

    Google Scholar 

  42. B. Hilczer, J. Kulek, E. Markiewicz, M. Kosec, B. Malic, Dielectric relaxation in ferroelectric PZT-PVDF nanocomposites. J. Non-Cryst. Solids 305, 167–173 (2002)

    Google Scholar 

  43. K.A. Cook-Chennault, N. Thambi, A.M. Sastry, Powering MEMS portable devices-a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy, harvesting systems. Smart Mater. Struct. 17, 043001 (2008)

    Google Scholar 

  44. S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, R175–R195 (2006)

    Google Scholar 

  45. Standards Committee of the IEEE Ultrasonics Ferroelectrics, and Frequency Control Society, IEEE Standard on Piezoelectricity (IEEE, New York, 1987)

    Google Scholar 

  46. A. Erturk, D.J. Inman, Piezoelectric Energy Harvesting, 1st edn. (Wiley, Chichester, 2011)

    Google Scholar 

  47. D. Zhu, in Vibration Energy Harvesting: Machinery Vibration, Human Movement and Flow Induced Vibration, Chapter 2, ed. by Y. K. Tan. Sustainable Energy Harvesting Technologies—Past, Present and Future (Intech, Rijeka, 2011)

    Google Scholar 

  48. H.A. Sodano, G. Park, D.J. Inman, Estimation of electric charge output for piezoelectric energy harvesting. Strain 40, 49–58 (2004)

    Google Scholar 

  49. S.N. Chen, G.J. Wang, M.C. Chien, Analytical modeling of piezoelectric vibration-induced micro power generator. Mechatronics 16, 387–397 (2006)

    Google Scholar 

  50. J. Ajitsaria, S.Y. Choe, D. Shen, D.J. Kim, Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Smart Mater. Struct. 16, 447–454 (2007)

    Google Scholar 

  51. G.K. Ottman, H.F. Hofmann, G.A. Lesieutre, Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Trans. Power Electron. 18, 696–703 (2003)

    Google Scholar 

  52. D. Guyomar, A. Badel, E. Lefeuvre, C. Richard, Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans. Ultrason. Ferroelect. Freq. Control 52, 584–595 (2005)

    Google Scholar 

  53. N. Kong, D.S. Ha, A. Erturk, D.J. Inman, Resistive impedance matching circuit for piezoelectric energy harvesting. J. Intell. Mater. Syst. Struct. 21, 1293–1302 (2010)

    Google Scholar 

  54. S. Roundy, P.K. Wright, A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13, 1131–1144 (2004)

    Google Scholar 

  55. N.E. DuToit, B.L. Wardle, S. Kim, Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr. Ferroelectr. 71, 121–160 (2005)

    Google Scholar 

  56. L. Meirovitch, Fundamentals of Vibrations (McGraw-Hill, New York, 2001)

    Google Scholar 

  57. D.J. Inman, Engineering Vibration (Prentice Hall, Englewood Cliffs, 2007)

    Google Scholar 

  58. N.G. Stephen, On energy harvesting from ambient vibration. J. Sound Vib. 293, 409–425 (2006)

    Google Scholar 

  59. A. Erturk, D.J. Inman, On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J. Intell. Mater. Syst. Struct. 19, 1311–1325 (2008)

    Google Scholar 

  60. H.A. Sodano, G. Park, D.J. Inman, Estimation of electric charge output for piezoelectric energy harvesting. Strain 40, 49–58 (2004)

    Google Scholar 

  61. N.E. duToit, B.L. Wardle, Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA J. 45, 1126–1137 (2007)

    Google Scholar 

  62. F. Lu, H.P. Lee, S.P. Lim, Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications. Smart Mater. Struct. 13, 57–63 (2004)

    Google Scholar 

  63. S.N. Chen, G.J. Wang, M.C. Chien, Analytical modeling of piezoelectric vibration-induced micro power generator. Mechatronics 16, 387–397 (2006)

    Google Scholar 

  64. J.H. Lin, X.M. Wu, T.L. Ren, L.T. Liu, Modeling and simulation of piezoelectric MEMS energy harvesting device. Integr. Ferroelectr. 95, 128–141 (2007)

    Google Scholar 

  65. A. Erturk, D.J. Inman, Issues in mathematical modeling of piezoelectric energy harvesters. Smart Mater. Struct. 17, 065016 (2008)

    Google Scholar 

  66. A. Erturk, D.J. Inman, A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. ASME J. Vib. Acoust. 130, 041002 (2008)

    Google Scholar 

  67. A. Erturk, D.J. Inman, An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009)

    Google Scholar 

  68. C.J. Rupp, A. Evgrafov, K. Maute, M.L. Dunn, Design of piezoelectric energy harvesting systems: a topology optimization approach based on multilayer plates and shells. J. Intell. Mater. Syst. Struct. 20, 1923–1939 (2009)

    Google Scholar 

  69. C. Jr De Marqui, A. Erturk, D.J. Inman, An electromechanical finite element model for piezoelectric energy harvester plates. J. Sound Vib. 327, 9–25 (2009)

    Google Scholar 

  70. N.G. Elvin, A.A. Elvin, A coupled finite element—circuit simulation model for analyzing piezoelectric energy generators. J. Intell. Mater. Syst. Struct. 20, 587–595 (2009)

    Google Scholar 

  71. Y. Yang, T. Tang, Equivalent circuit modeling of piezoelectric energy harvesters. J. Intell. Mater. Syst. Struct. 20, 2223–2235 (2009)

    Google Scholar 

  72. A. Erturk, J. Hoffmann, D.J. Inman, A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94, 254102 (2009)

    Google Scholar 

  73. S.C. Stanton, C.C. McGehee, B.P. Mann, Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 96, 174103 (2009)

    Google Scholar 

  74. S.C. Stanton, C.C. McGehee, B.P. Mann, Nonlinear dynamics for broadband energy harvesting: investigation of a bistable inertial generator. Physica D 239, 640–653 (2010)

    MATH  Google Scholar 

  75. S. Adhikari, M.I. Friswell, D.J. Inman, Piezoelectric energy harvesting from broadband random vibrations. Smart Mater. Struct. 18, 115005 (2009)

    Google Scholar 

  76. N.S. Shenck, J.A. Paradiso, Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 21, 30–42 (2001)

    Google Scholar 

  77. D. Fourie, Shoe-mounted PVDF piezoelectric transducer for energy harvesting (online version). http://web.vtc.edu/courses/el/elt2720/studentwork2012/KatieCloutier/index_files/shoe_mounted_piezo.pdf

  78. J.G. Rocha, L.M. Goncalves, P.F. Rocha, M.P. Silva, S. Lanceros-Mendez, Energy harvesting from piezoelectric materials fully integrated in footwear. IEEE Trans Industr. Electron. 57, 813–820 (2010)

    Google Scholar 

  79. L. Moro, D. Benasciutti, Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers. Smart Mater. Struct. 19, 115011 (2010)

    Google Scholar 

  80. D. Benasciutti, L. Moro, Energy Harvesting with Vibrating Shoe-Mounted Piezoelectric Cantilevers (Chapter 6), in Advances in Energy Harvesting Methods, ed. by N. Elvin, A. Erturk (Springer Science+Business Media, New York, 2013)

    Google Scholar 

  81. W.R. Ledoux, H.J. Hillstrom, Acceleration of the calcaneus at heel strike in neutrally aligned and pes planus feet. Clin. Biomech. 16, 608–613 (2001)

    Google Scholar 

  82. L. Mateu, F. Moll, Appropriate charge control of the storage capacitor in a piezoelectric energy harvesting device for discontinuous load operation. Sens. Actuators A 132, 302–310 (2006)

    Google Scholar 

  83. W.M. Whittle, Gait analysis, An Introduction, 4th edn. (Elsevier, Philadelphia, 2007)

    Google Scholar 

  84. J. Perry, Gait Analysis: Normal and Pathological Function (SLACK Incorporated, Thorofare, 1992)

    Google Scholar 

  85. D.A. Winter, Foot trajectory in human gait: a precise and multifactorial motor control task. Phys. Ther. 72, 45–53 (1992)

    Google Scholar 

  86. V.L. Giddings, G.S. Beaupre, R.T. Whalen, D.R. Carter, Calcaneal loading during walking and running. Med. Sci. Sports Exerc. 32, 627–634 (2000)

    Google Scholar 

  87. B.K. Tripathy, A study on step distance and its relation with some morphometric features in adult male. Anthropologist 6, 137–139 (2004)

    Google Scholar 

  88. P. Pillatsch, E.M. Yeatman, A.S. Holmes, A scalable piezoelectric impulse-excited energy harvester for human body excitation. Smart Mater. Struct. 21, 115018 (2012)

    Google Scholar 

  89. M. Renaud, P. Fiorini, R. van Schaijkand, C. Van Hoof, Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator. Smart Mater. Struct. 18, 035001 (2009)

    Google Scholar 

  90. S. Wei, H. Hu, S. He, Modeling and experimental investigation of an impact-driven piezoelectric energy harvester from human motion. Smart Mater. Struct. 22, 105020 (2013)

    Google Scholar 

  91. M. Pozzi, M. Zhu, Plucked piezoelectric bimorphs for knee-joint energy harvesting: modeling and experimental validation. Smart Mater. Struct. 20, 055007 (2011)

    Google Scholar 

  92. M. Pozzi, M. Zhu, Characterization of a rotary piezoelectric energy harvester based on plucking excitation for knee-joint wearable applications. Smart Mater. Struct. 21, 055004 (2012)

    Google Scholar 

  93. M. Pozzi1, M.S.H. Aung, M. Zhu, R.K Jones, J.Y Goulermas, The pizzicato knee-joint energy harvester: characterization with biomechanical data and the effect of backpack load. Smart Mater. Struct. 21, 075023 (2012)

    Google Scholar 

  94. B. Yang, K.S. Yun, Piezoelectric shell structures as wearable energy harvesters for effective power generation at low-frequency movement. Sens. Actuators. A 188, 427–433 (2012)

    Google Scholar 

  95. E. Kebadze, S.D. Guest, S. Pellegrino, Bistable prestressed shell structures. Int. J. Solids Struct. 41(2004), 2801–2820 (2004)

    MATH  Google Scholar 

  96. S.J. Kim, J.S. Hwang, J. Mok, Sensor/actuator optimal design for active vibration control of shell structure. J. Intell. Mater. Syst. Struct. 11, 848–856 (2000)

    Google Scholar 

  97. S. Daynes, K.D. Potter, P.M. Weaver, Bistable prestressed buckled laminates. Compos. Sci. Technol. 68, 3431–3437 (2008)

    Google Scholar 

  98. L. Gu, C. Livermore, Compact passively self-tuning energy harvesting for rotating applications. Smart Mater. Struct. 21, 015002 (2012)

    Google Scholar 

  99. M. Umeda, K. Nakamura, S. Ueha, Analysis of transformation of mechanical impact energy to electrical energy using a piezoelectric vibrator. Jpn. J. Appl. Phys. 35, 3267–3273 (1996)

    Google Scholar 

  100. S.H. Kim, J.H. Ahn, H.M. Chung, H.W. Kang, Analysis of piezoelectric effects on various loading conditions for energy harvesting in a bridge system. Sens. Actuators. A 167, 468–483 (2011)

    Google Scholar 

  101. M. Peigney, D. Siegert, Piezoelectric energy harvesting from traffic-induced bridge vibrations. Smart Mater. Struct. 22, 095019 (2013)

    Google Scholar 

  102. V.J. Ovejas, A. Cuadras, Multimodal piezoelectric wind energy harvesters. Smart Mater. Struct. 20, 085030 (2011)

    Google Scholar 

  103. J.J. Allen, A.J. Smits, Energy harvesting eel. J. Fluids Struct. 15, 629–640 (2001)

    Google Scholar 

  104. P. Rakbamrung, M. Lallart, D. Guyomar, N. Muensit, C. Thanachayanont, C. Lucat, B. Guiffard, L. Petit, P. Sukwisut, Performance comparison of PZT and PMN-PT piezoceramics for vibration energy harvesting using standard or nonlinear approach. Sens. Actuators A 163, 493–500 (2011)

    Google Scholar 

  105. W.B. Hobbs, D.L. Hu, Tree-inspired piezoelectric energy harvesting. J. Fluids Struct. 28, 103–114 (2012)

    Google Scholar 

  106. C. Van Eysden, J. Sader, Resonant frequencies of a rectangular cantilever beam immersed in a fluid. J. Appl. Phys. 100, 114916 (2009)

    Google Scholar 

  107. L. Ristroph, J. Zhang, Anomalous hydrodynamic drafting of interacting flapping flags. Phys. Rev. Lett. 101, 194502 (2008)

    Google Scholar 

  108. D.A. Wang, H.H. Ko, Piezoelectric energy harvesting from flow-induced vibration. J. Micromech. Microeng. 20, 025019 (2010)

    Google Scholar 

  109. D.A. Wang, N.Z. Liu, A shear mode piezoelectric energy harvester based on a pressurized water flow. Sens. Actuators A 167, 449–458 (2011)

    Google Scholar 

  110. A. Erturk, G. Delporte, Underwater thrust and power generation using flexible piezoelectric composites: an experimental investigation toward self-powered swimmer-sensor platforms. Smart Mater. Struct. 20, 125013 (2011)

    Google Scholar 

  111. R. Guigon, J.J. Chaillout, T. Jager, G. Despesse, Harvesting raindrop energy: theory. Smart Mater. Struct. 17, 015038 (2008)

    Google Scholar 

  112. R. Guigon, J.J. Chaillout, T. Jager, G. Despesse, Harvesting raindrop energy: experimental study. Smart Mater. Struct. 17, 015039 (2008)

    Google Scholar 

  113. D. Zhu, M.J. Tudor, S.P. Beeby, Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas. Sci. Technol. 21, 022002 (2010)

    Google Scholar 

  114. L. Roylance, J.B. Angell, A batch fabricated silicon accelerometer. IEEE Trans. Electron Devices 26, 1911–1917 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Bing Kong .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kong, L.B., Li, T., Hng, H.H., Boey, F., Zhang, T., Li, S. (2014). Waste Mechanical Energy Harvesting (I): Piezoelectric Effect. In: Waste Energy Harvesting. Lecture Notes in Energy, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54634-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54634-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54633-4

  • Online ISBN: 978-3-642-54634-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics