Skip to main content

How Root Structure Defines the Arbuscular Mycorrhizal Symbiosis and What We Can Learn from It?

  • Chapter
  • First Online:
Root Engineering

Part of the book series: Soil Biology ((SOILBIOL,volume 40))

Abstract

The colonisation of a root system by arbuscular mycorrhizal (AM) fungi depends on different root anatomical characteristics, e.g. thickening of the cell walls of the rhizodermis, exodermis and outer cortex or the presence of aerenchyma in the inner cortex. As a result, only some root orders are susceptible of being colonised. The type of mycorrhizal anatomy formed ranges between the two extremes of a continuum, the Paris and Arum types, and it has also been suggested that this depends on features of the root anatomy.

For over two decades, it has been known that AM fungi alter the root morphology of their host plants, in most cases reducing root branching and decreasing specific root length and the total root length to shoot dry weight ratio.

Despite this knowledge in all mycorrhizal studies to date, mycorrhizal colonisation has been expressed as a percentage colonisation of the total root length and there has been no attempt to modify the methods of AM colonisation assessment. Here, the results obtained with the palm species Phoenix canariensis are presented as a case study. As stated by other authors, a root order-oriented approach may expand the information gained from mycorrhizal studies. An alternative way of assessing AM colonisation for this palm species is suggested, the main objective being to provoke a rethinking of the methods used in mycorrhizal research and to move towards a more integrative approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LK (1982) Comparative anatomy of vesicular-arbuscular mycorrhizae formed on subterranean clover. Aust J Bot 30:485ā€“499

    Google ScholarĀ 

  • AguĆ­n O, Mansilla J, VilariƱo A, Sainz M (2004) Effects of mycorrhizal inoculation on root morphology and nursery production of three grapevine rootstocks. Am J Enol Vitic 55:108ā€“111

    Google ScholarĀ 

  • Ahulu EM, Gollotte A, Gianinazzi-Pearson V, Nonaka M (2006) Cooccurring plants forming distinct arbuscular mycorrhizal morphologies harbour similar AM fungal species. Mycorrhiza 17:37ā€“49

    Google ScholarĀ 

  • Allen N, Nordlander M, McGonigle T, Basinger J, Kaminskyj S (2006) Arbuscular mycorrhizae on Axel Heiberg Island (80 degrees N) and at Saskatoon (52 degrees N) Canada. Can J Bot 84:1094ā€“1100

    Google ScholarĀ 

  • Amijee F, Tinker P, Stribley D (1989) Effects of phosphorus on the morphology of VA mycorrhizal root system of leek (Allium porrum L.). Plant Soil 119:334ā€“336

    CASĀ  Google ScholarĀ 

  • Atkinson D (1992) Tree root development: the role of models in understanding the consequences of arbuscular endomycorrhizal infection. Agronomie 12:817ā€“820

    Google ScholarĀ 

  • Atkinson D, Berta G, Hooker J (1994) Impact of mycorrhizal colonization on root architecture, root longevity and the formation of growth regulators. In: Gianinazzi S, SchĆ¼epp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. BirkhƤuser Verlag, Basel, pp 89ā€“99

    Google ScholarĀ 

  • Bagniewska-Zadworna A, Byczyk J, Eissenstat DM, Oleksyn J, Zadworny M (2012) Avoiding transport bottlenecks in an expanding root system: xylem vessel development in fibrous and pioneer roots under field conditions. Am J Bot 99:1417ā€“1426

    PubMedĀ  Google ScholarĀ 

  • Bago A, Cano C, Toussaint J-P, Smith S, Dickson S (2006) Interactions between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and nontransformed tomato roots of either wild-type or AM-defective phenotypes in monoxenic cultures. Mycorrhiza 16:429ā€“436

    PubMedĀ  Google ScholarĀ 

  • Baylis G (1975) The magnoloid mycorrhiza and mycotrophy in root systems derived from it. In: Sanders F, Mosse B, Tinker P (eds) Endomycorrhizas. Academic, New York, pp 373ā€“389

    Google ScholarĀ 

  • Becker W, Gerdemann J (1977) Colorimetric quantification of vesicular-arbuscular mycorrhizal infection in onion. New Phytol 78:289ā€“295

    Google ScholarĀ 

  • Berta G, Fusconi A, Trotta A, Scannerini S (1990) Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L. New Phytol 114:207ā€“215

    Google ScholarĀ 

  • Berta G, Tagliasacchi A, Fusconi A, Gerlero D, Trotta A, Scannerini S (1991) The mitotic cycle in root apical meristems of Allium porrum L. is controlled by the endomycorrhizal fungus Glomus sp. strain E3. Protoplasma 161:12ā€“16

    Google ScholarĀ 

  • Berta G, Fusconi A, Trotta A (1993) VA mycorrhizal infection and the morphology and function of root systems. Environ Exp Bot 33:159ā€“173

    Google ScholarĀ 

  • Berta G, Trotta A, Fusconi A, Hooker J, Munro M, Atkinson D, Giovannetti M, Morini S, Fortuna P, Tisserant B, Gianinazzi-Pearson V, Gianinazzi S (1995) Arbuscular mycorrhizal induced changes to plant growth and root system morphology. Tree Physiol 15:281ā€“293

    PubMedĀ  Google ScholarĀ 

  • Berta G, Fusconi A, Hooker J (2002) Arbuscular mycorrhizal modifications to plant root systems: scale, mechanisms and consequences. In: Gianinazzi S, SchĆ¼epp H, Barea J, Haselwandter K (eds) Mycorrhizal technology in agriculture. From genes to bioproducts. BirkhƤuser Verlag, Basel, pp 71ā€“85

    Google ScholarĀ 

  • Blakely L, Blakely R, Colowit P, Elliot D (1988) Experimental studies on lateral root formation in the radish seedling roots. II. Analysis of the dose-response to exogenous auxin. Plant Physiol 87:414ā€“419

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Bonfante P, Perotto S (1995) Strategies of Arbuscular Mycorrhizal Fungi when Infecting Host Plants. New Phytol 130:3ā€“21

    Google ScholarĀ 

  • Brundrett M (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21:171ā€“313

    Google ScholarĀ 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37ā€“77

    CASĀ  Google ScholarĀ 

  • Brundrett MC, Kendrick B (1988) The mycorrhizal status, root anatomy, and phenology of plants in a sugar maple forest. Can J Bot 66:1153ā€“1173

    Google ScholarĀ 

  • Brundrett M, Kendrick B (1990a) The roots and mycorrhizas of herbaceous woodland plants. I. Quantitative aspects of morphology. New Phytol 114:457ā€“468

    Google ScholarĀ 

  • Brundrett M, Kendrick B (1990b) The roots and mycorrhizas of herbaceous woodland plants. II. Structural aspects of morphology. New Phytol 114:469ā€“479

    Google ScholarĀ 

  • Brundrett M, Murase G, Kendrick B (1990) Comparative anatomy of roots and mycorrhizae of common Ontario trees. Can J Bot 68:551ā€“578

    Google ScholarĀ 

  • Cabrera R, Hodgson F, Lorenzo C, Prendes C, Plata P (1990) ContribuciĆ³n al estudio de la anatomohistologĆ­a de la palmera canaria (Phoenix canariensis Chab.). I. La raĆ­z. Vieraea 18:41ā€“47

    Google ScholarĀ 

  • Carrillo L, Orellana R, Varela L (2002) Mycorrhizal associations in three species of palms of the Yucatan Peninsula, Mexico. Palms 46:39ā€“46

    Google ScholarĀ 

  • Cavagnaro TR, Gao LL, Smith FA, Smith SE (2001a) Morphology of arbuscular mycorrhizas is influenced by fungal identity. New Phytol 151:469ā€“475

    Google ScholarĀ 

  • Cavagnaro TR, Smith FA, Lorimer MF, Haskard KA, Ayling SM, Smith SE (2001b) Quantitative development of Paris-type arbuscular mycorrhizas formed between Asphodelus fistulosus and Glomus coronatum. New Phytol 149:105ā€“113

    Google ScholarĀ 

  • Comas LH, Eissenstat DM (2009) Patterns in root trait variation among 25 co-existing North American forest species. New Phytol 182:919ā€“928

    CASĀ  PubMedĀ  Google ScholarĀ 

  • da Silva JJ, Cardoso EJBN (2006) Micorriza arbuscular em cupuaƧu e pupunha cultivados em sistema agroflorestal e em monocultivo na AmazĆ“nia Central. Pesq Agropec Bras 41:819ā€“825

    Google ScholarĀ 

  • de Granville J (1974) AperƧu sur la structure des pneumatophores de deux especes des sols hydromorphes en Guyane. Cahier ORSTOM sĆ©r Biol 23:3ā€“22

    Google ScholarĀ 

  • Dickson S (2004) The Arum-Paris continuum of mycorrhizal symbiosis. New Phytol 163:187ā€“200

    Google ScholarĀ 

  • Dickson S, Smith FA, Smith SE (2007) Structural differences in arbuscular mycorrhizal symbioses: more than 100 years after Gallaud, where next? Mycorrhiza 17:375ā€“393

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Douds D, Pfeffer P, Shachar-Hill Y (2000) Carbon partitioning, cost, and metabolism of arbuscular mycorrhizas. In: Kapulnik Y, Douds D (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp 107ā€“129

    Google ScholarĀ 

  • Drew M (1975) Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol 75:479ā€“490

    CASĀ  Google ScholarĀ 

  • Dreyer B, Morte A, Honrubia M (2001) Growth of mycorrhizal Phoenix canariensis plants under three different cultivation systems. In: Horst WJ, Schenk MK, BĆ¼rkert A, Claassen N, Flessa H, Frommer WB, Goldbach H, Olfs HW, Rƶmfeld V, Sattelmacher B, Schmidhalter U, Schubert S, WirĆ©n N, Wittenmayer L (eds) Plant nutritionā€”food security and sustainability of agro-ecosystems. Kluwer, Dordrecht, pp 648ā€“649

    Google ScholarĀ 

  • Dreyer B, Morte A, PĆ©rez-Gilabert M, Honrubia M (2006) Autofluorescence detection of arbuscular mycorrhizal fungal structures in palm roots: an underestimated experimental method. Mycol Res 110:887ā€“897

    PubMedĀ  Google ScholarĀ 

  • Dreyer B, PĆ©rez-Gilabert M, Olmos E, Honrubia M, Morte A (2008) Ultrastructural localization of acid phosphatase in arbusculate coils of mycorrhizal Phoenix canariensis roots. Physiol Plant 132:503ā€“513

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Dreyer B, Morte A (2009) Use of the autofluorescence properties of AM fungi for AM assessment and handling. In: Varma A, Kharkwal C (eds) Symbiotic fungi: principles and practice, Soil biology series. Springer, Heidelberg, pp 123ā€“140

    Google ScholarĀ 

  • Dreyer B, Morte A, Lopez JA, Honrubia M (2010) Comparative study of mycorrhizal susceptibility and anatomy of four palm species. Mycorrhiza 20:103ā€“115

    PubMedĀ  Google ScholarĀ 

  • FernĆ”ndez-GarcĆ­a N, LĆ³pez-Berenguer C, Olmos E (2014) Role of phi cells under abiotic stress in plants. In: Morte A, Varma A (eds) Basic and applied concepts. Springer, Heidelberg

    Google ScholarĀ 

  • Fester T, Hause B, Schmidt D, Halfmann K, Schmidt J, Wray V, Hause G, Strack D (2002) Occurrence and localization of apocarotenoids in arbuscular mycorrhizal plant roots. Plant Cell Physiol 43:256ā€“265

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Fisher JB, Jayachandran K (1999) Root structure and arbuscular mycorrhizal colonization of the palm Serenoa repens under field conditions. Plant Soil 217:229ā€“241

    Google ScholarĀ 

  • Fisher J, Jayachandran K (2005) Presence of arbuscular mycorrhizal fungi in South Florida native plants. Mycorrhiza 15:580ā€“588

    PubMedĀ  Google ScholarĀ 

  • Fontana A (1985) Vesicular-arbuscular mycorrhizas of Gingko biloba L. in natural and controlled conditions. New Phytol 99:441ā€“447

    Google ScholarĀ 

  • Fusconi A, Gnavi E, Trotta A, Berta G (1999) Apical meristems of tomato roots and their modifications induced by arbuscular mycorrhizal and soilborne pathogenic fungi. New Phytol 142:505ā€“516

    Google ScholarĀ 

  • Fusconi A, Tagliasacchi A, Berta G, Trotta A, Brazzaventre S, Ruberti F, Scannerini S (2000) Root apical meristems of Allium porrum L. as affected by arbuscular mycorrhizae and phosphorus. Protoplasma 214:219ā€“226

    CASĀ  Google ScholarĀ 

  • Gamalero E, Martinotti M, Trotta A, Lemanceau P, Berta G (2002) Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol 155:293ā€“300

    Google ScholarĀ 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489ā€“499

    Google ScholarĀ 

  • Graham J (2000) Assessing costs of arbuscular mycorrhizal symbiosis in agroecosystems. In: Podila G, Douds D (eds) Current advances in mycorrhizae research. APS Press, St. Paul, MN, pp 127ā€“140

    Google ScholarĀ 

  • Guo D, Xia M, Wei X, Chang W, Liu Y, Wang Z (2008) Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol 180:673ā€“683

    PubMedĀ  Google ScholarĀ 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19ā€“42

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hetrick B (1991) Mycorrhizas and root architecture. Experientia 47:355ā€“362

    Google ScholarĀ 

  • Hetrick B, Leslie J, Wilson G, Kitt D (1988) Physical and topological assessment of effects of a vesicular-arbuscular mycorrhizal fungus on root architecture of big bluestem. New Phytol 110:85ā€“96

    Google ScholarĀ 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153ā€“187

    CASĀ  Google ScholarĀ 

  • Hooker J, Munro M, Atkinson D (1992) Vesicular-arbuscular mycorrhizal fungi induced alteration in poplar root system morphology. Plant Soil 145:207ā€“214

    Google ScholarĀ 

  • Hooker J, Berta G, Lingua G, Fusconi A, Sgorbati S (1998) Quantification of AMF-induced modifications to root system architecture and longevity. In: Varma A (ed) Mycorrhiza manual. Springer, Heidelberg, pp 515ā€“531

    Google ScholarĀ 

  • Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Bull Geol Soc Am 56:275ā€“370

    Google ScholarĀ 

  • Janos D (1977) Vesicular-arbuscular mycorrhizae affect the growth of Bactris gasipaes. Principes 21:12ā€“18

    Google ScholarĀ 

  • Jourdan C, Rey H (1997) Architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system. Plant Soil 189:33ā€“48

    CASĀ  Google ScholarĀ 

  • Jourdan C, Rey H, Guedon Y (1995) Architectural analysis and modelling of the branching process of the young oil-palm root system. Plant Soil 177:63ā€“72

    CASĀ  Google ScholarĀ 

  • Jourdan C, Michaux-Ferriere N, Perbal G (2000) Root system architecture and gravitropism in the oil palm. Ann Bot 85:861ā€“868

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kaldorf M, Ludwig-MĆ¼ller J (2000) AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiol Plant 109:58ā€“67

    CASĀ  Google ScholarĀ 

  • Klingner A, Bothe H, Wray V, Marner F (1995) Identification of a yellow pigment formed in maize roots upon mycorrhizal colonization. Phytochemistry 38:53ā€“55

    CASĀ  Google ScholarĀ 

  • Li Y (2008) Morphology and diversity of arbuscular mycorrhizal fungi colonizing roots of dandelion and chive. Master of science thesis, University of Saskatchewan, Canada

    Google ScholarĀ 

  • Lucash MS, Eissenstat DM, Joslin JD, McFarlane KJ, Yanai RD (2007) Estimating nutrient uptake by mature tree roots under field conditions: challenges and opportunities. Trees 21:593ā€“603

    CASĀ  Google ScholarĀ 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7ā€“13

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67ā€“77

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Manjunath A, Habte M (1991) Root morphological characteristics of host species having distinct mycorrhizal dependency. Can J Bot 69:671ā€“676

    Google ScholarĀ 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89ā€“102

    CASĀ  Google ScholarĀ 

  • McGonigle T, Miller M, Evans D, Fairchild G, Swan J (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495ā€“501

    Google ScholarĀ 

  • Miller R, Reinhardt D, Jastrow J (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17ā€“23

    Google ScholarĀ 

  • Morte A, Honrubia M (2002) Growth response of Phoenix canariensis to inoculation with arbuscular mycorrhizal fungi. Palms 46:76ā€“80

    Google ScholarĀ 

  • Muday G, Haworth P (1994) Tomato root growth, gravitropism, and lateral development: Correlation with auxin transport. Plant Physiol Biochem 32:193ā€“203

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Muthukumar T, Udaiyan K, Karthikeyan A, Manian S (1997) Influence of native endomycorrhiza, soil flooding and nurse plant on mycorrhizal status and growth of purple nutsedge (Cyperus rotundus L.). Agric Ecosyst Environ 61:51ā€“58

    Google ScholarĀ 

  • Nadarajah P (1980) Species of Endogonaceae and mycorrhizal association of Elaeis guineensis and Theobroma cacao. In: Mikola P (ed) Tropical mycorrhiza research. Clarendon, Oxford, pp 233ā€“237

    Google ScholarĀ 

  • Nair M, Safir G, Siqueira J (1991) Isolation and identification of vesicular-arbuscular mycorrhiza-stimulatory compounds from clover (Trifolium repens) roots. Appl Environ Microbiol 57:434ā€“439

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Nitta Y, Goto Y, Kakuda K, Ehara H, Ando H, Yoshida T, Yamamoto Y, Matsuda T, Jong F, Hassan A (2002) Morphological and anatomical observations of adventitious and lateral roots of sago palms. Plant Prod Sci 5:139ā€“145

    Google ScholarĀ 

  • Oihabi A (1991) Etude de l'influence des mycorrhizes a vesicules et arbuscules sur le bayoud et la nutrition du palmier dattier. PhD thesis, Universite Cadi Ayyad, Marrakech

    Google ScholarĀ 

  • Oihabi A, Perrin R, Marty F (1993) Effet des mycorrhizes V.A. sur la croissance et la nutrition minerale du palmier dattier. Rev RĆ©s AmĆ©lior Prod Agr Milieu Aride 5:1ā€“9

    Google ScholarĀ 

  • Peterson LR, Massicotte HB, Melville LH (2004) Mycorrhizas: anatomy and cell biology. NRC Research Press, Ottawa

    Google ScholarĀ 

  • Pregitzer KS (2002) Fine roots of trees: a new perspective. New Phytol 154:267ā€“270

    Google ScholarĀ 

  • Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendricks RL (2002) Fine root architecture of nine North American trees. Ecol Monogr 72:293ā€“309

    Google ScholarĀ 

  • Price N, Roncadori R, Hussey R (1989) Cotton root growth as influenced by phosphorus nutrition and vesicular-arbuscular mycorrhizas. New Phytol 111:61ā€“66

    Google ScholarĀ 

  • Ramos-Zapata J, Orellana R, Allen EB (2006) Mycorrhizal dynamics and dependence of Desmoncus orthacanthus Martius (Arecaceae), a native palm of the Yucatan Peninsula, Mexico. Interciencia 31:364ā€“370

    Google ScholarĀ 

  • Reed R, Brady S, Muday G (1998) Inhibition of auxin movement from the shoot into the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol 118:1369ā€“1378

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Schwab S, Menge J, Tinker P (1991) Regulation of nutrient transfer between host and fungus in vesicular-arbuscular mycorrhizas. New Phytol 117:387ā€“398

    CASĀ  Google ScholarĀ 

  • Sengupta A, Chaudhuri S (2002) Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza 12:169ā€“174

    PubMedĀ  Google ScholarĀ 

  • Seubert E (1996) Root anatomy of palms. II. Calamoideae. Feddes Repert 107:43ā€“59

    Google ScholarĀ 

  • Seubert E (1997) Root anatomy of palms. I. Coryphoideae. Flora 192:81ā€“103

    Google ScholarĀ 

  • Siqueira J, Safir G, Nair M (1991) Stimulation of vesicular-arbuscular mycorrhiza formation and growth of white clover by flavonoid compounds. New Phytol 118:87ā€“93

    CASĀ  Google ScholarĀ 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, San Diego

    Google ScholarĀ 

  • Smith F, Smith S (1997) Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. New Phytol 137:373ā€“388

    Google ScholarĀ 

  • Smith SE, Dickson S, Walker NA (1992) Distribution of VA mycorrhizal entry points near the root apex: Is there an uninfectible zone at the root tip of leek or clover? New Phytol 122:469ā€“477

    Google ScholarĀ 

  • Smith S, Smith F, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511ā€“524

    Google ScholarĀ 

  • Smucker A (1993) Soil environmental modifications of root dynamics and measurement. Annu Rev Phytopathol 31:191ā€“216

    Google ScholarĀ 

  • Tisserant B, Gianinazzi S, Gianinazzi-Pearson V (1996) Relationships between lateral root order, arbuscular mycorrhiza development, and the physiological state of the symbiotic fungus in Platanus acerifolia. Can J Bot 74:1947ā€“1955

    Google ScholarĀ 

  • Tomlinson P (1990) The structural biology of palms. Clarendon, Oxford

    Google ScholarĀ 

  • Torrey J (1986) Endogenous and exogenous influences on the regulation of lateral root formation. In: Jackson M (ed) New root formation in plants and cuttings. Martinus Nijhoff Publishers, Dordrecht, pp 31ā€“66

    Google ScholarĀ 

  • Torrisi V, Pattinson G, McGee P (1999) Localized elongation of roots of cotton follows establishment of arbuscular mycorrhizas. New Phytol 142:103ā€“112

    Google ScholarĀ 

  • Trotta A, Varese G, Gnavi E, Fusconi A, SampĆ² S, Berta G (1996) Interactions between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199ā€“209

    CASĀ  Google ScholarĀ 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorrhization VA dā€™un systĆØme radiculaire. Recherche de mĆ©thodes dā€™estimation ayant une signification fonctionelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 101ā€“109

    Google ScholarĀ 

  • Valenzuela-Estrada LR, Vera-Caraballo V, Ruth LE, Eissenstat DM (2008) Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae). Am J Bot 95:1506ā€“1514

    PubMedĀ  Google ScholarĀ 

  • Van Aarle IM, Cavagnaro TR, Smith SE, Smith FA, Dickson S (2005) Metabolic activity of Glomus intraradices in Arum- and Paris-type arbuscular mycorrhizal colonization. New Phytol 166:611ā€“618

    PubMedĀ  Google ScholarĀ 

  • Vierheilig H (2004) Further root colonization by arbuscular mycorrhizal fungi in already mycorrhizal plants is suppressed after a critical level of root colonization. J Plant Physiol 161:339ā€“341

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Vigo C, Norman J, Hooker J (2000) Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol 49:509ā€“514

    Google ScholarĀ 

  • von Guttenberg H (1968) Der primƤre Bau der Angiospermenwurzel. In: Zimmermann W, Ozenda P, Wulff H (eds) Handbuch der Pflanzenanatomie, vol 8, Teil 5. GebrĆ¼der Borntraeger, Berlin, Stuttgart

    Google ScholarĀ 

  • Yano K, Yamauchi A, Kono Y (1996) Localized alteration in lateral root development in roots colonized by an arbuscular mycorrhizal fungus. Mycorrhiza 6:409ā€“415

    Google ScholarĀ 

  • Zona S (1996) Roystonea (Arecaceae: Arecoideae). Flora Neotrop 71:1ā€“36

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AsunciĆ³n Morte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dreyer, B., Honrubia, M., Morte, A. (2014). How Root Structure Defines the Arbuscular Mycorrhizal Symbiosis and What We Can Learn from It?. In: Morte, A., Varma, A. (eds) Root Engineering. Soil Biology, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54276-3_7

Download citation

Publish with us

Policies and ethics