Skip to main content

Nanotechnology – from a Marine Discovery Perspective

  • Chapter
Springer Handbook of Marine Biotechnology

Part of the book series: Springer Handbooks ((SHB))

  • 8730 Accesses

Abstract

Among the technologies reinvented from nature in the twentieth century, nanotechnology is an application of material science to improve the quality of human life. In this chapter, the authors mainly highlight how different nanoparticles (GlossaryTerm

NP

), nanocomposites, and nanodevices that exist in nature is supporting life on earth. Oceans harbor a large number of microorganisms; a few can synthesize GlossaryTerm

NP

s through green technology and are much superior in quality to the ones produced in the conventional way. The marine organisms themselves can detoxify nanomaterials, so a natural cycle is maintained to produce and detoxify nanomaterials in nature. The design and functioning of the organs of several marine organisms and their cellular organization can help to construct many nanodevices for medical treatment and daily life. Natural biological models are available in the ocean to design novel nanomachines, optical devices, sensors, filters, fuel cells, and acoustic machines. Seawater GlossaryTerm

NP

s can control the earth’s climate. By incorporating biotechnological techniques into nanotechnology the wide scope for marine nanotechnology can be enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AgNP:

silver (argentum) nanoparticle

Au-CNT:

gold-coated carbon nanotubes

AuNP:

gold (aurum) nanoparticle

BALB/c:

albino, laboratory-bred strain of the house mouse

CD:

compact disc

CNN:

cloud condensation nuclei

CT:

computer tomography

DAP:

dorsal arm plate

DNA:

deoxyribonucleic acid

DVD:

digital video disc

FCC:

face centred cubic

FRET:

fluorescent resonance energy

LC-MS:

liquid chromatography-mass spectrometry

MRI:

magnetic resonance imaging

NMR:

nuclear magnetic resonance

NP:

nanoparticle

NSOM:

near field scanning optical microscopy

NTA:

nitrilotriacetic acid

PPE:

poly(para-phenylene ethynlyene)

PVDF:

polyvinylidene fluoride

PbNP:

lead (plumbum) nanoparticle

RNA:

ribonucleic acid

SERS:

surface enhanced Raman scattering

SONAR:

sound navigation and ranging

SPR:

surface plasmon resonance

USP:

ultra-short pulses

mRNA:

messenger RNA

β-HB:

β-hydroxy butyrate

References

  1. A. Villaverde: Nanotechnology, bionanotechnology and microbial cell factories, Microb. Cell Fact. 9, 53 (2010)

    Article  CAS  Google Scholar 

  2. H.C. Schröder, A. Krasko, D. Brandt, M. Wiens, M.N. Tahir, W. Tremel, W.E.G. Müller: Silicateins, silicase and spicule-associated proteins: Synthesis of demosponge silica skeleton and nanobiotechnological applications, Porifera Res. 2007, 581–592 (2007)

    Google Scholar 

  3. C. Jeffryes, T. Gutu, J. Jiao, G.L. Rorrer: Two-stage photobioreactor process for the metabolic insertion of nanostructured germanium into the silica microstructure of the diatom Pinnularia sp., Mater. Sci. Eng. C 28, 107–118 (2008)

    Article  CAS  Google Scholar 

  4. M.N. Tahir, M. Eberhardt, H.A. Therese, U. Kolb, P. Theato, W.E.G. Müller, H.-C. Schröder, W. Tremel: From single molecules to nanoscopically structured functional materials: Au nanocrystal growth on TiO${}_{{2}}$ nanowires controlled by surface-bound silicatein, Angew. Chem. Int. Ed. 45, 4803–4809 (2006)

    Article  CAS  Google Scholar 

  5. Y.C. Jung, B. Bhushan: Biomimetic structures for fluid drag reduction in laminar and turbulent flows, J. Phys.: Condens. Matter 22, 035104 (2010)

    Google Scholar 

  6. A.V. Singh, A. Rahman, N.V.G.S. Kumar, A.S. Aditi, M. Galluzzi, S. Bovio, S. Barozzi, E. Montani, D. Parazzoli: Bio-inspired approaches to design smart fabrics, Mater. Des. 36, 829–839 (2012)

    Article  CAS  Google Scholar 

  7. J.M. Dugan, R.F. Collins, J.E. Gough, S.J. Eichhorn: Oriented surfaces of adsorbed cellulose nanowhiskers promote skeletal muscle myogenesis, Acta Biomater. 9, 4707–4715 (2013)

    Article  CAS  Google Scholar 

  8. J. Aizenberg, G. Hendler: Designing efficient microlens: Lessons from Nature, J. Mater. Chem. 14, 2066–2072 (2004)

    Article  CAS  Google Scholar 

  9. T.J. Beveridge, R.G.E. Murray: Sites of metal deposition in the cell wall of Bacillus subtilis, J. Bacteriol. 141, 876–887 (1980)

    CAS  Google Scholar 

  10. G. Southam, T.J. Beveridge: The in vitro formation of placer gold by bacteria, Geochim. Cosmochim. Acta 58, 4527–4530 (1994)

    Article  CAS  Google Scholar 

  11. T. Klaus, R. Joerger, E. Oisson, C.-G. Granqvist: Silver-based crystalline nanoparticles, microbially fabricated, Proc. Natl. Acad. Sci. USA 96, 13611–13614 (1999)

    Article  CAS  Google Scholar 

  12. R. Joerger, T. Klaus, C.G. Granqvist: Biologically produced silver-carbon composite materials for optically functional thin-flim coatings, Adv. Mater. 12, 407–409 (2000)

    Article  CAS  Google Scholar 

  13. K. Kashefi, J.M. Tor, K.P. Nevin, D.R. Lovley: Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archea, Appl. Environ. Microbiol. 67, 3275–3279 (2001)

    Article  CAS  Google Scholar 

  14. M.F. Lengke, B. Ravel, M.E. Fleet, G. Wanger, R.A. Gordon, G. Southam: Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)–chloride complex, Environ. Sci. Technol. 40, 6304–6309 (2006)

    Article  CAS  Google Scholar 

  15. L. Du , H. Jiang, X. Liu, E. Wang: Biological synthesis of gold nanoparticles assisted by Escherichia coli DH5$\alpha$ and its application on direct electrochemistry of hemoglobin, Electrochem. Commun. 9, 1165–1170 (2007)

    Article  CAS  Google Scholar 

  16. R.R. Naik, S.J. Stringer, G. Agarwal, S.E. Jones, M.O. Stone: Biomimetic synthesis and patterning of silver nanoparticles, Nat. Mater. 1, 169–172 (2002)

    Article  CAS  Google Scholar 

  17. M.J. Marshall, A.S. Beliaev, A.C. Dohnalkova, D.W. Kennedy, L. Shi, Z. Wang, M.I. Boyanov, B. Lai, K.M. Kemner, J.S. McLean, S.B. Reed, D.E. Culley, V.L. Bailey, C.J. Simonson, D.A. Saffarini, M.F. Romine, J.M. Zachara, J.K. Fredrickson: C-type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis, PLOS Biol. 4, 1324–1333 (2006)

    Article  CAS  Google Scholar 

  18. A.S. Beliaev, D.A. Saffarini: Shewanella putrefaceins mtrB encodes outer membrane protein required for Fe(III) and Mn(IV) reduction, J. Bacteriol. 180, 6292–6297 (1988)

    Google Scholar 

  19. K.B. Narayanan, N. Sakthivel: Biological synthesis of metal nanoparticles by microbes, Adv. Colloid Interface Sci. 156, 1–13 (2010)

    Article  CAS  Google Scholar 

  20. N. Durán, P.D. Marcato, M. Durán, A. Yadav, A. Gade, M. Rai: Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants, Appl. Microbial. Biotechnol. 90, 1609–1624 (2011)

    Article  CAS  Google Scholar 

  21. D. Inbakandan, R. Venkatesan, S.A. Khan: Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongata (Dendy, 1905), Colloids Surf. B 81, 634–639 (2010)

    Article  CAS  Google Scholar 

  22. N. Sharma, A.K. Pinnaka, M. Raje, F.N.U. Ashish, M.S. Bhattacharyya, A.R. Choudhury: Exploitation of marine bacteria for production of gold nanoparticles, Microb. Cell Fact. 11, 86 (2012)

    Article  CAS  Google Scholar 

  23. G. Singaravelu, J.S. Arockiamary, V.G. Kumar, K. Govindaraju: A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville, Colloids Surf. B 57, 97–101 (2007)

    Article  CAS  Google Scholar 

  24. K.C. Bhainsa, S.F. D'Souza: Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus, Colloids Surf. B 47, 160–164 (2006)

    Article  CAS  Google Scholar 

  25. A. Nanda, M. Saravanan: Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE, Nanomedicine 5, 452–456 (2009)

    CAS  Google Scholar 

  26. R.T. Prakash, P. Thiagarajan: Syntheses and characterization of silver nanoparticles using Penicillium sp. isolated from soil, Int. J. Adv. Sci. Technol. Res. 2, 137–149 (2012)

    Google Scholar 

  27. K. Kathiresan, S. Manivannan, M.A. Nabeel, B. Dhivya: Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment, Colloids Surf. B 71, 133–137 (2009)

    Article  CAS  Google Scholar 

  28. S. Maruthamuthu, P. Dhandapani, N. Surpaja: Extracellular synthesis of silver nanoparticles by marine thermophilic bacteria, Int. J. Pharm. Biol. Arch. 3, 1418–1423 (2012)

    Google Scholar 

  29. P.R. Shetty, B.S. Kumar, Y.S. Kumar, G.G. Shankar: Characterization of silver nanoparticles synthesized by using marine isolate Streptomyces albidoflavus, J. Microbiol. Biotechnol. 22, 614–621 (2012)

    Article  CAS  Google Scholar 

  30. A.R. Shahverdi, A. Fakhimi, H.R. Shahverdi, S. Minaian: Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli, Nanomedicine 3, 168–171 (2007)

    CAS  Google Scholar 

  31. S. Seshadri, A. Prakash, M. Kowshik: Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp. PR58–8, Bull. Mater. Sci. 35, 1201–1205 (2012)

    Article  CAS  Google Scholar 

  32. S. Seshadri, K. Saranya, M. Kowshik: Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum, Biotechnol. Prog. 27, 1464–1469 (2011)

    Article  CAS  Google Scholar 

  33. Z.-T. Tsai, F.-Y. Tsai, W.-C. Yang, J.-F. Wang, C.-L. Liu, C.-R. Shen, T.-C. Yen: Preparation and characterization of ferrofluid stabilized with biocompatible chitosan and dextran sulfate hybrid biopolymer as a potential magnetic resonance imaging (MRI) T2 contrast agent, Mar. Drugs 10, 2403–2414 (2012)

    Article  CAS  Google Scholar 

  34. B.S. Saharan, R.K. Sahu, D. Sharma: A review of biosurfactants: Fermentation, current developments and perspectives, Genet. Eng. Biotechnol. J. 2011, 29 (2011)

    Google Scholar 

  35. C.N. Mulligan: Environmental applications for biosurfactants, Environ. Pollut. 133, 183–198 (2005)

    Article  CAS  Google Scholar 

  36. G.S. Kiran, A. Sabu, J. Selvin: Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19, J. Biotechnol. 148, 221–225 (2010)

    Article  CAS  Google Scholar 

  37. F.E. Kruis, H. Fissan, A. Peled: Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications – A review, J. Aerosol Sci. 29, 511–535 (1998)

    Article  CAS  Google Scholar 

  38. S.R. Bakshi, D. Lahiri, A. Agarwal: Carbon nanotube reinforced metal matrix composites – A review, Int. Mater. Rev. 55, 41–64 (2010)

    Article  CAS  Google Scholar 

  39. X. Shi, B. Sitharaman, Q.P. Pham, F. Liang, K. Wu, W.E. Billups, L.J. Wilson, A.G. Mikos: Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering, Biomaterials 28, 4078–4090 (2007)

    Article  CAS  Google Scholar 

  40. G. Mayer, M. Sarikaya: Rigid biological composite materials: Structural examples for biomimetic design, Exp. Mech. 42, 395–403 (2002)

    Article  CAS  Google Scholar 

  41. T. Gutu, L. Dong, J. Jiao, G.L. Rorrer, C.-H. Chang, C. Jeffryes, Q. Tian: Characterization of silicon-germanium oxide nanocomposites fabricated by the marine diatom Nitzschia frustulum, Microsc. Microanal. 11, 1958–1959 (2005)

    Article  Google Scholar 

  42. J.L. Sumerel, W. Yang, D. Kisailus, J.C. Weaver, J.H. Choi, D.E. Morse: Biocatalytically template synthesis of titanium dioxide, Chem. Mater. 15, 4804–4809 (2003)

    Article  CAS  Google Scholar 

  43. M.N. Tahir, P. Théato, W.E.G. Müller, H.C. Schröder, A. Borejko, S. Faiß, A. Janshoff, J. Huth, W. Tremel: Formation of layered titania and zirconia catalysed by surface-bound silicatein, Chem. Commun. 44, 5533–5535 (2005)

    Article  CAS  Google Scholar 

  44. P. Vartholomeos, M. Fruchard, A. Ferreira, C. Mavroidis: MRI-guided nanorobotic systems for therapeutic and diagnostic applications, Annu. Rev. Biomed. Eng. 13, 157–184 (2011)

    Article  CAS  Google Scholar 

  45. S.K. Sahoo, V. Labhasetwar: Nanotech approaches to drug delivery and imaging, Drug Discov. Today 8, 1112–1120 (2003)

    Article  CAS  Google Scholar 

  46. Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, E. Shapiro: An autonomous molecular computer for logical control of gene expression, Nature 429, 423–429 (2004)

    Article  CAS  Google Scholar 

  47. T. Ran, S. Kalpan, E. Shapiro: Molecular implementation of simple logic programs, Nat. Nanotech. 4, 642–648 (2009)

    Article  CAS  Google Scholar 

  48. S. Tong, T.J. Cradick, Y. Ma, Z. Dai, G. Bao: Engineering imaging probes and molecular machines for nanomedicine, Sci. China Life Sci. 55, 843–861 (2012)

    Article  CAS  Google Scholar 

  49. R.A. Freitas Jr.: Pharmacytes: An ideal vehicle for targeted drug delivery, J. Nanosci. Nanotechnol. 6, 2769–2775 (2006)

    Article  CAS  Google Scholar 

  50. M. Erhardt, K. Namba, K.T. Hughes: Bacterial nanomachines: The flagellum and type III injectisome, Cold Spring Harb. Perspect. Biol. 2, a000299 (2010)

    Article  CAS  Google Scholar 

  51. R.O. Ryan: Nanodisks: Hydrophobic drug delivery vehicles, Expert Opin. Drug Deliv. 5, 343–351 (2008)

    Article  CAS  Google Scholar 

  52. A. Grenha, M.E. Gomes, M. Rodrigues, V.E. Santo, J.F. Mano, N.M. Neves, R.L. Reis: Development of new chitosan/carrageenan nanoparticles for drug delivery applications, J. Biomed. Mater. Res. 92A, 1265–1272 (2009)

    Google Scholar 

  53. A. Ayalon, I. Shichor, Y. Tal, T. Lotan: Immediate topical drug delivery by natural submicron injectors, Int. J. Pharm. 419, 147–153 (2011)

    Article  CAS  Google Scholar 

  54. A.J. Meixner: Nanophotonics, nano-optics and nanospectroscopy, Beilstein J. Nanotechnol. 2, 499–500 (2011)

    Article  CAS  Google Scholar 

  55. L.D. Stefano, I. Rea, I. Rendina, M.D. Stefano, L. Moretti: Lensless light focusing with the centric marine diatom Coscinodiscus walesii, Opt. Express 15, 18082–18088 (2007)

    Article  Google Scholar 

  56. N.W. Roberts, T.-H. Chiou, N.J. Marshall, T.W. Cronin: A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region, Nat. Photonics 3, 614–644 (2009)

    Article  CAS  Google Scholar 

  57. L.L. Brott, R.R. Naik, D.J. Pikas, S.M. Kirkpatrick, D.W. Tomlin, P.W. Whitlock, S.J. Clarson, M.O. Stone: Ultrafast holographic nanopatterning of biocatalytically formed silica, Nature 413, 291–293 (2001)

    Article  CAS  Google Scholar 

  58. Y.N. Kulchin, A.V. Bezverbny, O.A. Bukin, S.S. Voznesensky, S.S. Golik, A.Y. Mayor, Y.A. Shchipunov, I.G. Nagorny: Nonlinear optical properties of biomineral and biomimetical nanocomposite structures, Laser Phys. 21, 630–636 (2011)

    Article  CAS  Google Scholar 

  59. Y.N. Kul'chin, S.S. Voznesenski, O.A. Bukin, A.V. Bezverbny, A.L. Drozdov, I.G. Nagorny, A.N. Galkina: Spicules of glass sponge as a new type of self-organizing natural photonic crystal, Opt. Spectrosc. 107, 442–447 (2009)

    Article  CAS  Google Scholar 

  60. P.C. Lau, R.A. Norwood, M. Mansuripur, N. Peyghambarian: An effective and simple oxygen nanosensor made from MPa-caped water soluble CdTe nanocrystals, Nanotechnology 24, 015501 (2013)

    Article  CAS  Google Scholar 

  61. K. agar, F. Hernandez-Ramirez, J.D. Prades, J.R. Morante, A. Renik, M. eh: Characterization of individual barium titanate nanorods and their assessment as building blocks of new circuit architectures, Nanotechnology 22, 385501 (2011)

    Article  CAS  Google Scholar 

  62. X. Wang, B. Ding, J. Yu, M. Wang, F. Pan: A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance, Nanotechnology 21, 055502 (2010)

    Article  CAS  Google Scholar 

  63. R. Artzi-Gerlitz, K.D. Benkstein, D.L. Lahr, J.L. Hertz, C.B. Montgomery, J.E. Bonevich, S. Semancik, M.J. Tarlov: Fabrication and gas sensing performance of parallel assemblies of metal oxide nanotubes supported by porous aluminium oxide membranes, Sens. Actu. B 136, 257–264 (2009)

    Article  CAS  Google Scholar 

  64. D. Cai, Y. Yu, Y. Lan, F.J. dufort, G. Xiong, T. Paudel, Z. Ren, D.J. Wagner, T.C. Chiles: Glucose sensors made of novel carbon nanotube-gold nanoparticle composites, Biofactors 30, 271–277 (2007)

    Article  CAS  Google Scholar 

  65. R.Y. Zhang, H. Olin: Gold-carbon nanotube nanocomposites: Synthesis and applications, Int. J. Biomed. Nanosci. Nanotechnol. 2, 112–135 (2011)

    Article  Google Scholar 

  66. H. Rajabzade, P. Daneshgar, E. Tazikeh, R.Z. Mehrabian: Functionalized carbon nanotubes with gold nanoparticles to fabricate a sensor for hydrogen peroxide determination, E.-J. Chem. 9, 2540–2549 (2012)

    Article  CAS  Google Scholar 

  67. N.F. Atta, R.A. Ahmed, M.A. Amin, A. Galal: Monodispersed gold nanoparticles decorated carbon nanotubes as an enhanced sensing platform for nanomolar detection of tramadol, Electroanalysis 24, 2135–2146 (2012)

    Article  CAS  Google Scholar 

  68. S.-J. Young, Z.-D. Lin, C.-H. Hsiao, C.-S. Huang: Ethanol gas sensors composed of carbon nanotubes with adsorbed gold nanoparticles, Int. J. Electrochem. Sci. 7, 11634–11640 (2012)

    CAS  Google Scholar 

  69. S. Mubeen, J.-H. Lim, A. Srirangarajan, A. Mulchandani, M.A. Deshusses, N.V. Myung: Gas sensing mechanism of gold nanoparticles decorated single-walled carbon nanotubes, Electroanalysis 23, 2687–2692 (2011)

    Article  CAS  Google Scholar 

  70. Y.-H. Tseng, Y. He, L. Que: Ultrasensitive thin film infrared sensors enabled by hybrid nanomaterials, Analyst 138, 3053–3057 (2013)

    Article  CAS  Google Scholar 

  71. F. Favier, E.C. Walter, M.P. Zach, T. Benter, R.M. Penner: Hydrogen sensors and switches from electrodeposited palladium mesowire arrays, Science 293, 2227–2231 (2001)

    Article  CAS  Google Scholar 

  72. Y. Cui, Q. Wei, H. Park, C.M. Lieber: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science 293, 1289–1292 (2001)

    Article  CAS  Google Scholar 

  73. R.L. Phillips, O.R. Miranda, C.-C. You, V.M. Rotello, U.H.F. Bunz: Rapid and efficient identification of bacteria using gold-nanoparticle-poly(para-phenyleneethynylene) constructs, Angew. Chem. Int. Ed. 47, 2590–2594 (2008)

    Article  CAS  Google Scholar 

  74. K.C. Güven, A. Percot, E. Sezik: Alkaloids in marine algae, Mar. Drugs 8, 269–284 (2010)

    Article  CAS  Google Scholar 

  75. A. Bismuto, A. Setaro, P. Maddalena, L. de Stefano, M. de Stefano: Marine diatoms as optical chemical sensors: A time-resolved study, Sens. Actu. B 130, 396–399 (2008)

    Article  CAS  Google Scholar 

  76. M.T. Yahya, C.B. Cluff, C.P. Gerba: Virus removal by slow sand filtration and nanofiltration, Water Sci. Technol. 27, 445–448 (1993)

    CAS  Google Scholar 

  77. C.R. Reiss, J.S. Taylor, C. Robert: Surface water treatment using nanofiltration – Pilot testing results and design considerations, Desalination 125, 97–112 (1999)

    Article  CAS  Google Scholar 

  78. T. Hillie, M. Hlophe: Nanotechnology and the challenge of clean water, Nat. Nanotechnol. 2, 663–664 (2007)

    Article  CAS  Google Scholar 

  79. S. Mondal, S.R. Wickramasinghe: Produced water treatment by nanofiltration and reverse osmosis membranes, J. Membr. Sci. 322, 162–170 (2008)

    Article  CAS  Google Scholar 

  80. J.G. Jacangelo, R.R. Trussell, M. Watson: Role of membrane technology in drinking water treatment in the United States, Desalination 113, 119–127 (1997)

    Article  CAS  Google Scholar 

  81. J. Radjenovic, M. Petrovic, F. Ventura, D. Barcelo: Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment, Water Res. 42, 3601–3610 (2008)

    Article  CAS  Google Scholar 

  82. E.M. Vrijenhoek, J.J. Waypa: Arsenic removal from drinking water by a “loose” nanofiltration membrane, Desalination 130, 265–277 (2000)

    Article  CAS  Google Scholar 

  83. J. Parkinson, R. Gordon: Beyond micromachining: The potential of diatoms, Trends Biotechnol. 17, 190–196 (1999)

    Article  CAS  Google Scholar 

  84. R.W. Drum, R. Gordon: Star trek replicators and diatom nanotechnology, Trends Biotechnol. 21, 325–328 (2003)

    Article  CAS  Google Scholar 

  85. D. Goldhaber-Gordon, M.S. Montemerlo, J.C. Love, G.J. Opiteck, J.C. Ellenbogen: Overview of nanoelectronic devices, Proc. IEEE 85, 521–540 (1997)

    Article  CAS  Google Scholar 

  86. J. Xu, D.A. Lavan: Designing artificial cells to harness the biological ion concentration gradient, Nat. Nanotechnol. 3, 666–670 (2008)

    Article  CAS  Google Scholar 

  87. J. Xu, F.J. Sigworth, D.A. Lavan: Synthetic protocells to mimic and test cell function, Adv. Mater. 22, 120–127 (2010)

    Article  CAS  Google Scholar 

  88. W.W.L. Au, K.J. Benoit-Bird, R.A. Kastelein: Modeling the deletion range of fish by echolocating bottlenose dolphins and harbor porpoises, J. Acoust. Soc. Am. 121, 3954–3962 (2007)

    Article  Google Scholar 

  89. A.S. Fiorillo, S.A. Pullano: Ferroelectric polymer for bio-sonar replica. In: Ferroelectrics – Applications, ed. by M. Lallart (Intech, Croatia 2011) pp. 75–93

    Google Scholar 

  90. G.M. Sessler: Piezoelectricity in polyvinylideneflouride, J. Acoust. Soc. Am. 70, 1556–1608 (1981)

    Article  Google Scholar 

  91. J.W. Hunt, M. Arditi, F.S. Foster: Ultrasound transducers for pulse-echo medical imaging, IEEE Trans. Biomed. Eng. BME 30, 453–481 (1983)

    Article  CAS  Google Scholar 

  92. D.D. Martin, D.H. Bartlett, M.F. Roberts: Solute accumulation in the deep-sea bacterium Photobacterium profundum, Extremophiles 6, 507–514 (2002)

    Article  CAS  Google Scholar 

  93. E.F. Delong, D.G. Franks, A.A. Yayanos: Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria, Appl. Environ. Microbiol. 63, 2105–2108 (1997)

    CAS  Google Scholar 

  94. B. Alexander, R.J. Park, D.J. Jacob, Q.B. Li, R.M. Yantosca, J. Savarino, C.C.W. Lee, M.H. Thiemens: Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes, J. Geophys. Res. Atmos. 110, D10307 (2005)

    Article  CAS  Google Scholar 

  95. P.R. Buseck, M. Pósfai: Airborne minerals and related aerosol particles: Effects on climate and the environment, Proc. Natl. Acad. Sci. USA 96, 3372–3379 (1999)

    Article  CAS  Google Scholar 

  96. N.A. Clegg, R. Toumi: Non-sea-salt-sulphate formation in sea-salt aerosol, J. Geophys. Res. Atmos. 103, 31095–31102 (1998)

    Article  CAS  Google Scholar 

  97. C. Buzea, I.I. Pacheco, K. Robbie: Nanomaterials and nanoparticles: Sources and toxicity, Biointerphases 2, MR17–MR71 (2007)

    Article  Google Scholar 

  98. S.T. Ballard, C.J. Parker, C.R. Hamm: Restoration of mucociliary transport in the fluid-depleted trachea by surface-active instillates, Am. J. Respir. Cell Mol. Biol. 34, 500–504 (2006)

    Article  CAS  Google Scholar 

  99. H. Greim, P. Borm, R. Schins, K. Donaldson, K. Driscoll, A. Hartwiq, E. Kuempel, G. Oberdoster, G. Speit: Toxicity of fibers and particles, Report of the workshop held in Munich, Germany, Inhal. Toxicol. 13, 737–754 (2001)

    Article  CAS  Google Scholar 

  100. M.S. Hull, P. Chaurand, J. Rose, M. Auffan, J.-Y. Bottero, J.C. Jones, I.R. Schultz, P.J. Vikesland: Filter-feeding bivalves store and biodeposit colloidally stable gold nanoparticles, Environ. Sci. Technol. 45, 6592–6599 (2011)

    Article  CAS  Google Scholar 

  101. M.O. Montes, S.K. Hanna, H.S. Lenihan, A.A. Keller: Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder, J. Hazard. Mater. 225/226, 139–145 (2012)

    Article  CAS  Google Scholar 

  102. G.M. Luz, J.F. Mano: Biomimetic design of materials and biomaterials inspired by the structure of nacre, Philos. Trans. R. Soc. A 367, 1587–1605 (2009)

    Article  CAS  Google Scholar 

  103. B. Dean, B. Bhushan: Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review, Philos. Trans. R. Soc. A 368, 4775–4806 (2010)

    Article  Google Scholar 

  104. D.W. Bechert, M. Bruse, W. Hage, R. Meyer: Fluid mechanics of biological surfaces and their technological application, Naturwissenschaften 87, 157–171 (2000)

    Article  CAS  Google Scholar 

  105. M. Nosonovsky, B. Bhushan: Superhydrophobicity for energy conversion and conservation applications, J. Adhes. Sci. Technol. 22, 2105–2115 (2008)

    CAS  Google Scholar 

  106. J. Oeffner, G.V. Lauder: The hydrodynamic function of shark skin and two biomimetic applications, J. Exp. Biol. 215, 785–795 (2012)

    Article  Google Scholar 

  107. M. Mincea, A. Negrulescu, V. Ostafe: Preparation, modification, and applications of chitin nanowhiskers: A review, Rev. Adv. Mater. Sci. 30, 225–242 (2012)

    CAS  Google Scholar 

  108. X. Li, X. Li, B. Ke, X. Shi, Y. Du : Cooperative performance of chitin whisker and rectorite fillers on chitosan films, Carbohydr. Polym. 85, 747–752 (2011)

    Article  CAS  Google Scholar 

  109. P.T.S. Kumar, S. Abhilash, K. Manzoor, S.V. Nair, H. Tamura, R. Jayakumar: Preparation and characterization of novel β-chitin/nanosilver composite scaffolds for wound dressing applications, Carbohydr. Polym. 80, 761–767 (2010)

    Article  CAS  Google Scholar 

  110. B.L. Peng, N. Dhar, H.L. Liu, K.C. Tam: Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective, Can. J. Chem. Eng. 89, 1–16 (2011)

    Article  CAS  Google Scholar 

  111. M.C.B. de Figueirêdo, M. de Freitas Rosa, C.M.L. Ugaya, M. : de Sá Morcira de Souza Filho, A. C. C. da Silva Braid, L. F. L. de Melo: Life cycle assessment of cellulose nanowhiskers, J. Clean. Prod. 35, 130–139 (2012)

    Article  CAS  Google Scholar 

  112. R.H. Douglas, J.C. Partridge, N.J. Marshall: The eyes of deep-sea fish I: Lens pigmentation, tapeta and visual pigments, Progr. Retin. Eye. Res. 17, 597–636 (1998)

    Article  CAS  Google Scholar 

  113. O. Munk: Duplex retina in the mesopelagic deep-sea teleost Lestidiops affinis (Ege, 1930), Acta. Zoolog. 70, 143–149 (1989)

    Article  Google Scholar 

  114. J.Y. Lee, B.H. Hong, W.Y. Kim, S.K. Min, Y. Kim, M.V. Jouravlev, R. Bose, K.S. Kim, I.-C. Hwang, L.J. Kaufman, C.W. Wong, P. Kim, K.S. Kim: Near-field focusing and magnification through self-assembled nanoscale spherical lenses, Nature 460, 498–501 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramachandran S. Santhosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Santhosh, R.S., Amarendra, V. (2015). Nanotechnology – from a Marine Discovery Perspective. In: Kim, SK. (eds) Springer Handbook of Marine Biotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53971-8_49

Download citation

Publish with us

Policies and ethics