Skip to main content

Basic Models of Computational Mass Transfer

  • Chapter
  • First Online:
Introduction to Computational Mass Transfer

Part of the book series: Heat and Mass Transfer ((HMT))

Abstract

The computational mass transfer (CMT) aims to find the concentration profile in process equipment, which is the most important basis for evaluating the process efficiency as well as the effectiveness of an existing mass transfer equipment. This chapter is dedicated to the description of the fundamentals and the recently published models of CMT for obtaining simultaneously the concentration, velocity and temperature distributions. The challenge is the closure of the differential species conservation equation for the mass transfer in a turbulent flow. Two models are presented. The first is a two-equation model termed as \( \overline{{c^{{{\prime }2}} }} - \varepsilon_{{{\text{c}}^{{\prime }} }} \) model, which is based on the Boussinesq postulate by introducing an isotropic turbulent mass transfer diffusivity. The other is the Reynolds mass flux model, in which the variable covariant term in the equation is modeled and computed directly, and so it is anisotropic and rigorous. Both methods are validated by comparing with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[B]:

Matrix of inverted Maxwell–Stefan Diffusivities, m−2 s

c :

Instantaneous mass concentration of species i, kg m−3; Molar concentration of species i in Sect. 3.4.2, mol s−3

\( c_{\text{t}} \) :

Total molar concentration of component i per m3, mol m−3

C :

Time-average concentration, bulk concentration, kg m−3 in Table 3.1 mass fraction

C + :

Dimensionless concentration

c′:

Fluctuating concentration, kg m−3

\( \overline{{c^{{{\prime }2}} }} \) :

Variance of fluctuating concentration, kg2 m−6

D :

Molecular diffusivity, m2 s−1

D e :

Effective mass diffusivity, m2 s−1

D t :

Isotropic turbulent mass diffusivity, m2 s−1

D:

Maxwell-Stefan diffusivity, m2 s−1

\( {\mathbf{D}}_{\text{t}} \) :

Anisotropic turbulent mass diffusivity, m2 s−1

g :

Gravity acceleration, m s−2

[I]:

Identity matrix, dimensionless

J w :

Mass flux at wall surface, kg m−2 s−1

k :

Fluctuating kinetic energy, m2 s−2; mass transfer coefficient, m s−1

[k]:

Matrix of mass transfer coefficients, m s−1

l :

Characteristic length, m

[N i ]:

Molar mass flux of diffusing species i, mol−2 s−1

[N t]:

Molar mass flux of multicomponent solution, mol−2 s−1

p′:

Fluctuating pressure, kg m−1 s−2

P :

Time-average pressure, kg m−1 s−2

Pe :

Peclet number

[R]:

Matrix of inverted mass transfer coefficients, m−1 s

r c :

Ratio of fluctuating velocity dissipation time and fluctuating concentration dissipation time

S :

Source term

Sc :

Schmidt number

Sc t :

Turbulent Schmidt number

t :

Time, s

T :

Fluctuating temperature, K

\( \overline{{T^{{{\prime }2}} }} \) :

Variance of fluctuating temperature, K2

T :

Time-average temperature, K

u :

Instantaneous velocity of species i, m s−1

u′:

Fluctuating velocity, m s−1

u τ :

Frictional velocity, m s−1

u + :

Dimensionless velocity, m s−1

U, V, W :

Time-average velocity in three directions, m s−1

[X]:

Matrix of correction factor

y + :

Dimensionless distance, m

αt :

Turbulent thermal diffusivity, m−1 s−1

[β]:

Matrix of molar exchange of mass transfer in counter-diffusion due to the difference of latent hear of vaporization between component i and j, dimensionless

δ:

Kronecker sign; thickness of fluid film, m

ε:

Dissipation rate of turbulent kinetic energy, m2 s−3

εc′ :

Dissipation rate of concentration variance, kg2 m−6 s−1

εt :

Dissipation rate of temperature variance, K2 s−1

μ:

Viscosity, kg m−1 s−1

μt :

Turbulent viscosity, kg m−1 s−1

ν e :

Effective turbulent diffusivity, m2 s−1

ρ:

Density, kg m−3

[Γ]:

Matrix of non-ideality factor (in terms of activity coefficient γ), dimensionless

τ μ, τ c, τ m :

Characteristic time scale, s

τ w :

Near-wall stress, kg m−1 s−2

References

  1. Liu BT (2003) Study of a new mass transfer model of CFD and its application on distillation tray. Ph.D. dissertation, Tianjin University, Tianjin, China (in Chinese)

    Google Scholar 

  2. Sun ZM (2005) Study on computational mass transfer in chemical engineering. Ph.D. dissertation, Tianjin University, Tianjin, China (in Chinese)

    Google Scholar 

  3. Sun ZM, Liu BT, Yuan XG, Yu KT (2005) New turbulent model for computational mass transfer and its application to a commercial-scale distillation column. Ind Eng Chem Res 44(12):4427–4434

    Article  CAS  Google Scholar 

  4. Sun ZM, Yu KT, Yuan XG, Liu CJ (2007) A modified model of computational mass transfer for distillation column. Chem Eng Sci 62:1839–1850

    Article  CAS  Google Scholar 

  5. Liu GB (2006) Computational transport and its application to mass transfer and reaction processes in pack-beds. Ph.D. dissertation, Tianjin University, Tianjin, China (in Chinese)

    Google Scholar 

  6. Liu GB, Yu KT, Yuan XG, Liu CJ, Guo QC (2006) Simulations of chemical absorption in pilot-scale and industrial-scale packed columns by computational mass transfer. Chem Eng Sci 61:6511–6529

    Article  CAS  Google Scholar 

  7. Liu GB, Yu KT, Yuan XG, Liu CJ (2006) New model for turbulent mass transfer and its application to the simulations of a pilot-scale randomly packed column for CO2–NaOH chemical absorption. Ind Eng Chem Res 45:3220–3229

    Article  CAS  Google Scholar 

  8. Liu GB, Yu KT, Yuan XG, Liu CJ (2008) A computational transport model for wall-cooled catalytic reactor. Ind Eng Chem Res 47:2656–2665

    Article  CAS  Google Scholar 

  9. Liu GB, Yu KT, Yuan XG, Liu CJ (2009) A numerical method for predicting the performance of a randomly packed distillation column. Int J Heat Mass Tran 52:5330–5338

    Article  CAS  Google Scholar 

  10. Li WB, Liu BT, Yu KT, Yuan XG (2011) A rigorous model for the simulation of gas adsorption and its verification. Ind Eng Chem Res 50(13):361–370 (8)

    Google Scholar 

  11. Sun ZM, Liu CJ, Yu GC, Yuan XG (2011) Prediction of distillation column performance by computational mass transfer method. Chin J Chem Eng 19(5):833–844

    Article  CAS  Google Scholar 

  12. Lemoine F, Antoine Y, Wolff M et al (2000) Some experimental investigations on the concentration variance and its dissipation rate in a grid generated turbulent flow. Int J Heat Mass Tran 43(7):1187–1199

    Article  Google Scholar 

  13. Spadling DB (1971) Concentration fluctuations in a round turbulent free jet. Chem Eng Sci 26:95

    Article  Google Scholar 

  14. Launder BE, Samaraweera SA (1979) Application of a second-moment turbulence closure to heat and mass transport in thin shear flows—two-dimensional transport. Int J Heat Mass Tran 22:1631–1643

    Article  Google Scholar 

  15. Sommer TP, So MRC (1995) On the modeling of homogeneous turbulence in a stably stratified flow. Phys Fluids 7:2766–2777

    Article  CAS  Google Scholar 

  16. Sherwood TK, Pigford RL, Wilke CR (1975) Mass transfer. McGraw Hill, New York

    Google Scholar 

  17. Cai TJ, Chen GX (2004) Liquid back-mixing on distillation trays. Ind Eng Chem Res 43(10):2590–2597

    Article  CAS  Google Scholar 

  18. Comini G, Del Giudice S (1985) A k–e model of turbulent flow. Numer Heat Transf 8:299–316

    Article  Google Scholar 

  19. Patankar SV, Sparrow EM, Ivanovic M (1978) Thermal interactions among the confining walls of a turbulent recirculating flow. Int J Heat Mass Tran 21(3):269–274

    Article  Google Scholar 

  20. Tavoularis S, Corrsin S (1981) Experiments in nearly homogenous turbulent shear-flow with a uniform mean temperature-gradient. J Fluid Mech 104:311–347 (MAR)

    Article  Google Scholar 

  21. Ferchichi M, Tavoularis S (2002) Scalar probability density function and fine structure in uniformly sheared turbulence. J Fluid Mech 461:155–182

    Article  Google Scholar 

  22. Sun ZM, Liu CT, Yuan XG, Yu KT (2006) Measurement and numerical simulation of concentration distribution on sieve tray. J Chem Ind Eng (China) 57(8):1878–1883

    Google Scholar 

  23. Chen CJ, Jaw SY (1998) Fundamentals of turbulence modeling. Taylor and Francis, London

    Google Scholar 

  24. Jone CJ, Launder BE (1973) The calculation of low-reynolds-number phenomena with a two-equation model of turbulence. Int J Heat Mass Tran 16:1119–1130

    Article  Google Scholar 

  25. Khalil EE, Spalading DB, Whitelaw JH (1975) Calculation of local flow properties in 2-dimensional furnaces. Int J Heat Mass Transfer 18:775–791

    Article  CAS  Google Scholar 

  26. Li WB, Liu BT, Yu KT, Yuan XG (2011) A new model for the simulation of distillation column. Chin J Chem Eng 19(5):717–725

    Article  CAS  Google Scholar 

  27. Li WB (2012) Theory and application of computational mass transfer for chemical engineering processes. Ph.D. dissertation, Tianjin University, Tianjin

    Google Scholar 

  28. Gesit G, Nandakumar K, Chuang KT (2003) CFD modeling of flow patterns and hydraulics of commercial-scale sieve trays. AIChE J 49:910

    Article  CAS  Google Scholar 

  29. Krishna R, van Baten JM, Ellenberger J (1999) CFD simulations of sieve tray hydrodynamics. Trans IChemE 77 Part A 10:639–646

    Article  Google Scholar 

  30. Solari RB, Bell RL (1986) Fluid flow patterns and velocity distribution on commercial-scale sieve trays. AIChE J 32:640

    Article  CAS  Google Scholar 

  31. Wang XL, Liu CT, Yuan XG, Yu KT (2004) Computational fluid dynamics simulation of three-dimensional liquid flow and mass transfer on distillation column trays. Ind Eng Chem Res 43(10):2556–2567

    Article  CAS  Google Scholar 

  32. Auton TR, Hunt JCR, Prud’homme M (1988) The force exerted on a body in inviscid unsteady non-uniform rotational flow. J Fluid Mech 197:241

    Article  Google Scholar 

  33. Krishna R, Urseanu MI, Van Baten JM et al (1999) Rise velocity of a swarm of large gas bubbles in liquids. Chem Eng Sci 54:171–183

    Article  CAS  Google Scholar 

  34. Yu KT, Yuan XG, You XY, Liu CJ (1999) Computational fluid-dynamics and experimental verification of two-phase two-dimensional flow on a sieve column tray. Chem Eng Res Des 77A:554

    Article  Google Scholar 

  35. Colwell CJ (1979) Clear liquid height and froth density on sieve trays. Ind Eng Chem Proc Des Dev 20:298

    Article  Google Scholar 

  36. Bennet DL, Agrawal R, Cook PJ (1983) New pressure drop correlation for sieve tray distillation columns. AIChE J 29:434–442

    Article  Google Scholar 

  37. Higbie R (1935) The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans Am Inst Chem Eng 35:360–365

    Google Scholar 

  38. Doan HD, Fayed ME (2000) Entrance effect and gas-film mass-transfer coefficient in at large diameter packed column. Ind Eng Chem Res 39:1039–1047

    Article  CAS  Google Scholar 

  39. Gostick J, Doan HD, Lohi A, Pritzkev MD (2003) Investigation of local mass transfer in a packed bed of pall rings using a limiting current technique. Ind Eng Res 42:3626–3634

    Article  CAS  Google Scholar 

  40. Yih SM, Chen KY (1982) Gas absorption into wavy and turbulent falling liquid films in a wetted-wall. Chem Eng Commun 17(1–6):123–136

    Article  CAS  Google Scholar 

  41. Gostick J, Doan HD, Lohi A, Pritzkev MD (2003) Investigation of local mass transfer in a packed bed of pall rings using a limiting current technique. Ind Eng Chem Res 42:3626–3634

    Article  CAS  Google Scholar 

  42. Chen YM, Sun CY (1997) Experimental study on the heat and mass transfer of a combined absorber evaporator exchanger. Int J Heat Mass Tran 40:961–971

    Article  CAS  Google Scholar 

  43. Krupiczka R, Rotkegel A (1997) An experimental study of diffusional cross-effect in multicomponent mass transfer. Chem Eng Sci 52(6):1007–1017

    Article  CAS  Google Scholar 

  44. Vasquez G, Antorrena G, Navaza JM, Santos V, Rodriguez T (1993) Adsorption of CO2 in aqueous solutions of various viscosities in the presence of induced turbulence. Int Chem Eng 33(4):649–655

    Google Scholar 

  45. Sterinberger N, Hondzo M (1999) Diffusional mass transfer at sediment water interface. J Environ Eng 125(2):192–200

    Article  Google Scholar 

  46. Carberry JJ (1960) A boundary-layer model of fluid-particle mass transfer in mixed beds. AIChE J 4:460

    Article  Google Scholar 

  47. Nielsen CHE, Kiil S, Thomsen HW, Dam-Johansen K (1998) Mass transfer in wetted-wall columns: correlations at high Reynolds numbers. Chem Eng Sci 53(3):495–503

    Article  CAS  Google Scholar 

  48. Yang MC, Cussler EL (1986) Designing hollow-fiber contactors. AIChE J 32(11):1910–1916

    Article  CAS  Google Scholar 

  49. Hichey PJ, Gooding CH (1994) Mass transfer in spiral wound pervaporation modules. J Membr Sci 92(1):59–74

    Article  Google Scholar 

  50. Sekino M (1995) Study of an analytical model for hollow fiber reverse osmosis module systems. Desalination 100(1):85–97

    Article  Google Scholar 

  51. Erasmus AB, Nieuwoudt I (2001) Mass transfer in structured packing: a wetted-wall study. Ind Eng Chem Res 40:2310–2321

    Article  CAS  Google Scholar 

  52. Cussler EL (1989) Diffusion. Cambridge University Press, New York

    Google Scholar 

  53. Baerns M, Hofmann H, Renken A (1987) Chemische Reaktionstechnik Stuttgart. Thieme

    Google Scholar 

  54. Jordan U, Schumpe A (2001) The gas density effect on mass transfer in bubble columns with organic liquids. Chem Eng Sci 56(21):6267–6272

    Article  CAS  Google Scholar 

  55. Yang W, Wang J, Jin Y (2001) Mass transfer characteristics of syngas components in slurry system at industrial conditions. Chem Eng Technol 24(6):651–657

    Article  CAS  Google Scholar 

  56. Hameed MS, Saleh Muhammed M (2003) Mass transfer into liquid falling film in straight and helically coiled tubes. Int J Heat Mass Transf 46(10):1715–1724

    Article  CAS  Google Scholar 

  57. Shulman HL, Ullrich CF, Proulx AZ et al (1955) Performance of packed columns. Wetted and effective interfacial areas, gas- and liquid-phase mass transfer rates. AIChE J 1(2):253–258

    Article  CAS  Google Scholar 

  58. Onda K, Takeuchi H, Okumoto Y (1968) Mass transfer coefficients between gas and liquid phases in packed columns. J Chem Eng Jpn 1(1):56–62

    Article  CAS  Google Scholar 

  59. Billet R, Schultes M (1992) Advantage in correlating packing column performance. Inst Chem Eng Symp Ser 128(2):B129–B136

    CAS  Google Scholar 

  60. Bravo JL, Rocha JA, Fair JR (1985) Mass transfer in gauze packings. Hydrocarb Process 64(1):91–95

    CAS  Google Scholar 

  61. Olujic Z, Kamerbeek AB, De Graauw J (1999) A corrugation geometry based model for efficiency of structured distillation packing. Chem Eng Process 38(4–6):683–695

    Article  CAS  Google Scholar 

  62. Zuiderweg FJ (1892) Sieve trays: a view on state of art. Chem Eng Sci 37:1441–1464

    Article  Google Scholar 

  63. Akita K, Yoshida F (1973) Gas holdup and volumetric mass transfer coefficient in bubble column. Ind Eng Chem Process Des Dev 12(1):76–80

    Article  CAS  Google Scholar 

  64. Zhou CF (2005) Study on the influence of Marangoni effect and other factor on the mass transfer coefficients. M.S. dissertation, Tianjin University, Tianjin, China (in Chinese)

    Google Scholar 

  65. Wang GQ, Yuan XG, Yu KT (2005) Review of mass-transfer correlations for packed columns. Ind Eng Chem Res 44:8715–8729

    Article  CAS  Google Scholar 

  66. Krishna R, Wesselingh JA (1997) The Maxwell-Stefan approach to mass transfer. Chem Eng Sci 52(6):861–911

    Article  CAS  Google Scholar 

  67. Krishna R (1985) Model for prediction of point efficiencies for multicomponent distillation. Chem Eng Res Des 63(5):312–322

    CAS  Google Scholar 

  68. Song HW, Wang SY, Han JC, Wu JW (1996) A new model for predicting distillation point efficiencies of non-ideal multicomponent mixture. CIESC J 47(5):571

    CAS  Google Scholar 

  69. Wang ZC (1997) Non-ideal multicomponent mass transfer and point efficiencies on a sieve tray. PhD dissertation, Tianjin University, Tianjin, China (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Tsong Yu .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, KT., Yuan, X. (2014). Basic Models of Computational Mass Transfer. In: Introduction to Computational Mass Transfer. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53911-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53911-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53910-7

  • Online ISBN: 978-3-642-53911-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics