Skip to main content

Ocean/Atmosphere Cycling of Dimethylsulfide

  • Conference paper
Ice Core Studies of Global Biogeochemical Cycles

Part of the book series: NATO ASI Series ((ASII,volume 30))

Abstract

Sulfur is one of the elements for which man’s activities represent a major perturbation of a global geochemical cycle. Although sulfur is a minor element in terms of its abundance in the earth’s crust and atmosphere it plays an important role in atmospheric chemistry by virtue of the fact that it is the principle source for acidic aerosols. For this reason the sulfur cycle is involved in a number of ecological issues of importance on local, regional, and global scales. These issues include 1) the formation and transport of acid precipitation, 2) the impact of aerosols on human health and 3) the effect of aerosols on atmospheric visibility and radiative properties, and 4) the effect of aerosols on cloud distributions and their radiative properties. The possibility has also been raised that sulfur-containing aerosols may have an impact on stratospheric chemistry and thus potentially play a role in the regulation of the planetary ozone layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreae MO, (1980) Dimethyl sulfoxide in marine and fresh waters. Limnol Oceanogr 25:1054–1063

    Article  CAS  Google Scholar 

  • Andreae MO, Barnard WR, Amnions JM (1983) The biological production of dimethylsulfide in the ocean and its role in the global atmospheric sulfur budget. Ecol Bull 35:167–177

    CAS  Google Scholar 

  • Andreae MO (1986) The ocean as a source of atmospheric sulfur compounds. In: The Role of Air-Sea Exchange in Geochemical Cycling. P. Buat-Menard, ed., D. Reidel, Boston, 331–362

    Chapter  Google Scholar 

  • Andreae MO (1990) Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Marine Chemistry 30:1–29

    Article  CAS  Google Scholar 

  • Andreae TW, Cutter GA, Hussein N, Radford-Knoery L, Andreae MO (1992) Hydrogen sulfide and radon in and over the western North Atlantic Ocean, J Geophys Res 96:18753–18760

    Article  Google Scholar 

  • Andreae MO, Ferek RJ, Bermond F, Byrd KP, Engstrom RT, Hardin S, Houmere PD, LeMarrec F, Raemdonck H, Chatfield RB (1985) Dimethylsulfide in the marine atmosphere. J Geophys Res 90:12891–12900

    Article  Google Scholar 

  • Asher WE, Farley PJ, Wanninkhof R, Monahan EC, Bates TS (1992) Laboratory and field measurements concerning the correlation of fractional area foam coverage with air/sea gas transport, in Precipitation Scavenging and Atmosphere-Surface Exchange. v 2-The Semonin Volume: Atmosphere-Surface Exchange Processes, SE Schwartz and WGN Slinn, eds., 815–828, Hemisphere, Wash, DC

    Google Scholar 

  • Ayers GP, Ivey JP, Giliett RW (1991) Coherence between seasonal cycles of dimethyl sulphide, methanesulphonate and sulphate in marine air. Nature 239:404–406

    Article  Google Scholar 

  • Bandy AR, Scott DL, Bloomquist BW, Chen SM, Thornton DC (1992) Low yields of SO2 from dimethyl sulfide oxidation in the marine boundary layer. Geophys Res Lett 11:1125–1127

    Article  Google Scholar 

  • Barnes I, Bastian V, Becker KH (1988) Kinetics and mechanisms of the reaction of OH radicals with dimethyl sulfide. Int J Chem Kin 20:415–431

    Article  CAS  Google Scholar 

  • Bates TS, Cline JD, Gammon RH, Kelly-Hansen SR (1987) Regional and seasonal variations in the flux of oceanic dimethylsulfide to the atmosphere. J Geophys Res 92:2930–2938

    Article  CAS  Google Scholar 

  • Bates TS, Lamb BK, Guenther A, Dignon J, Stoiber RE (1992) Sulfur emissions to the atmosphere from natural sources. J Atm Chem 14:315–337

    Article  CAS  Google Scholar 

  • Berresheim H (1987) Biogenic sulfur emissions from Antarctic waters. J Geophys Res 92:13245–13262

    Article  CAS  Google Scholar 

  • Brimblecombe P, Shooter D (1986) Photo-oxidation of dimethylsulphide in aqueous solution. Mar Chem 19:343–353

    Article  CAS  Google Scholar 

  • Broecker WS, Peng T-H, Ostlund G, Stuiver M (1985) The distribution of bomb radiocarbon in the ocean. J Geophys Res 90:6953–6970

    Article  CAS  Google Scholar 

  • Cember R (1989) Bomb radiocarbon in the Red Sea: A medium-scale gas exchange experiment J Geophys Res 94:2111–2123

    Article  CAS  Google Scholar 

  • Chameides WL, Davis DD (1982) The free radical chemistry of cloud droplets and its impact on the composition of rain. J Geophys Res 87:4863–4877

    Article  CAS  Google Scholar 

  • Chameides WL, Stelson AW (1992) Aqueous-phase chemical processes in deliquescent sea salt aerosols: a mechanism that couples the atmospheric cycles of S and sea salt. J Geophys Res 97:20565–20580

    Article  Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655–661

    Article  CAS  Google Scholar 

  • Chatfield RB, Grutzen PJ (1984) Sulfur dioxide in remote oceanic air: Cloud transport of reactive precursors, J Geophys Res 89:7111–7132

    Google Scholar 

  • Dacey JWH, Blough NV (1987) Hydroxide decomposition of dimethylsulfoniopropionate to form dimethylsulfide. Geophys Res Lett 14:1246–1249

    Article  CAS  Google Scholar 

  • Dacey JWH, Wakeham SG (1986) Oceanic dimethylsulfide: production during Zooplankton grazing on phytoplankton. Science 233:1314–1316

    Article  CAS  Google Scholar 

  • Domine F, Ravishankara AR, Howard CJ (1992) Kinetics and mechanisms of the reactions of CH3S, CH3SS5 CH3SO, and CH3SSO with O3 at 300 K and low pressures. J Phys Chem 96:2171

    Article  CAS  Google Scholar 

  • Fanning KA (1989) Influence of atmospheric pollution on nutrient limitation in the ocean. Nature 339:460–463

    Article  CAS  Google Scholar 

  • Farmer DM, McNeil CL, Johnson BD (1993) Evidence for the importance of bubbles in increasing air-sea gas flux. Nature 361:620–623

    Article  Google Scholar 

  • Galloway JN, Savoie DL, Keene WC, Prospero JM (1993) The temporal and spatial variability of scavenging ratios for nss sulfate, nitrate, methanesulfonate and sodium in the atmosphere over the north Atlantic Ocean. Atmos Environ 27A:235–250

    CAS  Google Scholar 

  • Graedel TC (1979) Reduced sulfur emissions from the open oceans, Geophys Res Lett 6:329–331

    Article  CAS  Google Scholar 

  • Gregory GL, Davis DD, Beltz N, Bandy AR, Ferek RJ, Thornton D (1993) An intercomparison of aircraft instrumentation for tropospheric measurements of sulfur dioxide. J Geophys Res, 98:23325–23352

    Article  CAS  Google Scholar 

  • Grosjean D (1984) Photooxidation of methyl sulfide, ethyl sulfide, and methanethiol. Environ Sci Technol 18:460–468

    Article  CAS  Google Scholar 

  • Hatakeyama SM, Izumi K, Akimoto H (1985) Yield of SO2 and formation of aerosol in the photo-oxidation of DMS under atmospheric conditions. Atmos Environ 19:135–141

    Article  CAS  Google Scholar 

  • Hayduk W, Laudie J (1974) Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AIChE J 20:611–615

    Article  CAS  Google Scholar 

  • Hynes AJ, Wine PH, Semmes DH (1986) Kinetics and mechanism of OH reactions with organic sulfides. J Phys Chem 90:4148–4156

    Article  CAS  Google Scholar 

  • Hynes AJ, Pounds AJ, McKay T, Bradshaw JD, Wine PD (1992) Detailed mechanistic studies of the OH-initiated oxidation of biogenic sulfur compounds under atmospheric conditions. Abstract from the 12th International Symposium on Gas Kinetics, University of Reading, England

    Google Scholar 

  • Jacob DJ (1984) Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate. J Geophys Res 91:9807–9826

    Article  Google Scholar 

  • Jahne B, Munnich O, Bosinger R, Dutzi A, Huber W, and Libner P (1987) On the parameters influencing air-water gas exchange. J Geophys Res 92:1937–1949

    Article  Google Scholar 

  • Keller MD, Bellows WK, Guillard RRL (1989) Dimethyl sulfide production in marine phytoplankton. In: Biogenic Sulfur in the Environment, Saltzman and Cooper, eds., Am Chem Soc Symposium Series v. 393, Wash. DC

    Google Scholar 

  • Kieber D, Jiao J, Kiene RP, Bates RS (1993) Comparison of photochemical, biological, and atmospheric removal of dimethylsulfide from the equatorial Pacific Ocean. The Oceanog Soc Mtg Abstract, I-GCB-114

    Google Scholar 

  • Kiene RP (1992) Dynamics of dimethyl sulfide and dimethylsulfoniopropionate in oceanic water samples. Mar Chem 37:29–52

    Article  CAS  Google Scholar 

  • Kiene RP and Service SK (1991) Decomposition of dissolved DMSP and DMS in estuarine water: dependence on temperature and substrate concentration. Mar Ecol Prog Ser 76:1–11

    Article  CAS  Google Scholar 

  • Kiene RP, Taylor BF (1988) Biotransformations of organosulfur compounds in sediments via 3-mercaptopropionate. Nature 332:148–150

    Article  CAS  Google Scholar 

  • Kiene RP, Bates TS (1991) Biological removal of dimethyl sulphide from sea water. Nature 345:702–705

    Article  Google Scholar 

  • Kiene RP, Capone DG (1998) Microbial transformations of methylated sulfur compounds in anoxic saltmarsh sediments. Microbial Ecol 15:275–291

    Article  Google Scholar 

  • Koblentz-Mislike OJ, Volkovinsky VV, Kabanova JG (1970) Plankton primary production of the world ocean. In W.S. Wooster (Editor), Scientific Exploration of the South Pacific. National Academy of Science, Washington, DC, pp. 183

    Google Scholar 

  • Lind J, Eriksen TE (1975) Pulse radiolysis of methane sulphonic acid. Radiochem Radioanal Lett 21:177–181

    CAS  Google Scholar 

  • Liss PS (1973) Processes of gas exchange across an air-water interface. Deep Sea Research 20:221–238

    CAS  Google Scholar 

  • Liss PS, Slater PG (1974) Flux of gases across the air-sea interface. Nature 247:181–184

    Article  CAS  Google Scholar 

  • Liss PS, Merlivat L (1986) In: Gas Transfer at Water Surfaces. W. Brutsaert and G.H. Jirka, eds., 447–457

    Google Scholar 

  • Martin JH, Fitzwater SE, Gordon RM (1990) Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeoch Cycles 4:5–12

    Article  CAS  Google Scholar 

  • Matrai PA, Keller MD (1993) Dimethylsulfide in a large-scale coccolithophore bloom in the Gulf of Maine, Cont Shelf Res 13:831–843

    Article  Google Scholar 

  • Matrai PA, Balch WM, Cooper DJ, Saltzman ES (1993) Ocean color and atmospheric DMS: on their mesoscale variability. J Geophys Res, 98:23469–23476

    Article  CAS  Google Scholar 

  • Merlivat L, Memery M (1983) Gas exchange across an air-water interface: Experimental results and modeling of bubble contribution to transfer. J Geophys Res 88:707–724

    Article  Google Scholar 

  • Millero FJ (1974) Seawater as a multicomponent electrolyte solution. In: The Sea, volume 5, E.D. Goldberg (ed.), John Wiley and Sons, Inc., 3–80

    Google Scholar 

  • Millero FJ and Poisson A (1981) International one-atmosphere equation of state of seawater. Deep Sea Research, 28A:625–629

    Google Scholar 

  • Milne PJ, Zika RG, and Saltzman ES (1989) Rate of reaction of methanesulfonic acid, dimethyl sulfoxide, and dimethyl sulfone with hydroxyl radical in aqueous solution. In: Biogenic Sulfur in the Environment, Saltzman and Cooper, eds. Am Chem Soc Symp v. 393, Wash. DC

    Google Scholar 

  • Mopper K, Taylor BF (1986) Biogeochemical cycling of sulfur. Thiols in coastal marine sediments. In: Organic marine chemistry, ML Sohn, ed., Am Chem Soc, Wash DC 324–339

    Google Scholar 

  • ***Peng TH, Broecker WS, Mathieu GG, Li Y-H (1979) Radon evasion rates in the Atlantic and Pacific Oceans as determined during the Geosecs program. J Geophys Res 84:2471–2486

    Article  CAS  Google Scholar 

  • Pszenny AA, Castelle AJ, Galloway JN, Duce RA (1989) A study of the sulfur cycle in the Antarctic marine boundary layer. J Geophys Res 94:9818–9380

    Article  CAS  Google Scholar 

  • Pszenny AP (1992) Particle size distributions of methanesulfonate in the tropical Pacific marine boundary layer. J Atmos Chem 14:273–284

    Article  CAS  Google Scholar 

  • Reed RH (1983) Measurement and osmotic significance of β-dimethyisulphoniopropionate in marine macroalgae. Mar Biol Lett 4:173–181

    CAS  Google Scholar 

  • Saltzman ES, Gidel LT, Zika RG, Milne PJ, Prospero JM, Savoie DL, Coooper WB (1984) Atmospheric chemistry of methane sulfonic acid. In: Environmental Impact of Natural Emissions, ed. VP Aneja, Air Pollut Control Assoc, Pittsburgh

    Google Scholar 

  • Saltzman ES, Cooper DJ (1988) Shipboard measurements of atmospheric dimethylsulfide and hydrogen sulfide in the Caribbean and Gulf of Mexico. J Atmos Chem 7:191–209

    Article  CAS  Google Scholar 

  • Saltzman ES, King DB, Holmen K, Leck C (1993) Experimental determination of the diffusion coefficient of dimethylsulfide in water. J Geophys Res 98:16481–16486

    Article  Google Scholar 

  • Saltzman ES, Savoie DL, Zika RG, Prospero JM (1983) Methane sulfonic acid in the marine atmosphere. J Geophys Res 88:10897–10902

    Article  CAS  Google Scholar 

  • Saltzman ES, Savoie DL, Prospero JM, Zika RG (1985) Methanesulfonic acid and non-sea-salt sulfate in Pacific air: Regional and seasonal variations. J Atmos Chem 4:227–240

    Google Scholar 

  • Savoie DL, Arimoto R, Prospero JM, Duce RA, Graustem WC, Turekian KK, Galloway JN, Keene WC (1995) Oceanic and anthropogenic contributions to non-sea-salt sulfate in the marine boundary layer over the north Atlantic Ocean. J Geophys Res, in press

    Google Scholar 

  • Savoie DL, Prospero JM (1989) Comparison of oceanic and continental sources of non-sea-salt sulphate over the Pacific Ocean. Nature 339:685–687

    Article  CAS  Google Scholar 

  • Savoie DL, Prospero JM, Larsen RJ, Saltzman ES (1992) Nitrogen and sulfur species in aerosols at Mawson, Antarctica, and their relationship to natural radionuclides. J Atm Chem 14:181–204

    Google Scholar 

  • Shaw GE (1983) Bio-controlled thermostasis involving the sulfur cycle. Climatic Change 5:297–303

    Article  CAS  Google Scholar 

  • Shooter D, Brimblecombe P (1989) Dimethylsulphide oxidation in the ocean. Deep Sea Res 36:577–585

    Article  CAS  Google Scholar 

  • Sievering H, Boatman J, Gorman E, Kim Y, Anderson L, Ennis G, Luria M, Pandis S (1992) Removal of sulphur from the marine boundary layer by ozone oxidation in sea-salt aerosols. Nature 360:571–573

    Article  CAS  Google Scholar 

  • Sievering H, Boatman J, Galloway H, Keene W, Kim Y, Luria M, Ray J (1991) Heterogeneous sulfur conversion in sea-salt aerosol particles: the role of aerosol water content and size distribution. Atmos Env 25A:1479–1487

    CAS  Google Scholar 

  • Smethie WM Jr., Takahashi T, Chipman DW, Ledwell JR (1985) Gas exchange and CO2 flux in the tropical Atlantic Ocean determined from 222Rn and P<Subscript>CO<Subscript>2</Subscript></Subscript> measurements. J Geophys Res 90:7005–7022

    Article  CAS  Google Scholar 

  • Stefels J, van Boekel J (1993) Production of DMS from dissolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp, In: Interactions of Phaeocycstis SP with organic compounds and the microbial foodweb, van Boekel, PhD Thesis, Rijksuniversiteit Groningen

    Google Scholar 

  • Suylen GMH, Stefess GC, Kuenen JG (1986) Chemolithotrophic potential of a Hyphomicrobium species, capable of growth on methylated sulfur compounds. Arch Microbiol 146:192–198

    Article  CAS  Google Scholar 

  • Thorpe SA (1982) On the clouds of bubbles formed by breaking wind-waves in deep water and their role in air-sea gas transfer. Phil Trans R Soc Lond A304:155–210

    Article  Google Scholar 

  • Toon OB, Kasting JB, Turco RP, Liu MS (1987) The sulfur cycle in the marine atmosphere. J Geophys Res 92:943–963

    Article  CAS  Google Scholar 

  • Turner SM, Malin G, Liss PS, Harbour DS, Holligan PM (1988) The seasonal variation of dimethyl sulfide and dimethylsulfoniopropionate concentrations in nearshore waters. Limnol Oceanogr 33:364–375

    Article  CAS  Google Scholar 

  • Vairavamurthy A, Andreae MO, Iverson RL (1985) Biosynthesis of dimethylsulfide and dimethylpropiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations. Limnol and Oceanogr 30:59–70

    Article  CAS  Google Scholar 

  • Visscher PT, Diaz MR, Taylor BF (1992) Enumeration of bacteria which cleave or demethylate dimethyl-sulfoniopropionate in the Caribbean Sea. Mar Ecol Prog Ser 89:293–296

    Article  Google Scholar 

  • Wanninkhof R, Ledwell JR, Broecker WS (1985) Gas exchange-wind speed relation measured with sulfur hexafluoride on a lake. Science 227:1224–1226

    Article  CAS  Google Scholar 

  • Wanninkhof R (1992) Relationship between gas exchange and wind speed over the ocean. J Geophys Res 97:7373–7381

    Article  Google Scholar 

  • Wanninkhof R, Asher W, Weppering R, Chen H, Schlosser P, Langdon C, Sambrotto R (1993) Gas transfer experiment on Georges Bank using two volatile deliberate tracers. J Geophys Res 98:20237–20248

    Article  Google Scholar 

  • Watson AJ, Upstill-Goddard RS, Liss PS (1991) Air-sea gas exchange in rough and stormy seas measured by a dual-tracer technique. Nature 349:145–147

    Article  CAS  Google Scholar 

  • Whung P-Y, Saltzman ES, Spencer MJ, Mayewski PM, Gundestrup N (1994) A two hundred years record of biogenic sulfur in a south Greenland ice core (20D). J Geophys Res, 99:1147–1156

    Article  CAS  Google Scholar 

  • Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. AIChE J 1:264–270

    Article  CAS  Google Scholar 

  • Yin F-D, Grosjean D, Seinfeld JH (1990) Photooxidation of dimethyl sulfide and dimethyl disulfide: I: Mechanism development. J Atmos Chem 11:309–364

    Google Scholar 

  • Yin F-D, Grosjean D, Flagan RC, Seinfeld JH (1990) Photooxidation of dimethyl sulfide and dimethyl disulfide. II: Mechanism evaluation. J Atmos Chem 11:365–399

    Google Scholar 

  • Young RW, Carder KL, Betzer PR, Costello DK, Duce RA, DiTullio GR, Tindale N, Laws EA, Uematsu M, Merrill JT, Feely RA (1993) Atmospheric iron inputs and primary productivity: phytoplankton responses in the North Pacific. Global Biogeochem Cycles, in press

    Google Scholar 

  • Yvon SA, Saltzman ES, Cooper DJ, Bates TS, Thompson AM (1995) Atmospheric dimethylsulfide cycling at a tropical South Pacific station (12°S, 135°N): a comparison of field data and model results. J Geophys Res, in press

    Google Scholar 

  • Yvon SA, Saltzman ES, Cooper DJ (1992) Measurements of atmospheric DMS, SO2, and H2S over the equatorial Pacific during IGAC/MAGE. EOS Trans Am Geophys Union 73:81

    Google Scholar 

  • Yvon SA, Saltzman ES, Cooper DJ (1993) Atmospheric hydrogen sulfide over the equatorial Pacific (SAGA-3). J Geophys Res 98:16979–16983

    Article  CAS  Google Scholar 

  • Zinder SH, Brock TD (1978) Dimethyl sulfoxide reduction by microorganisms. J Gen Microbiol 105:335–342

    CAS  Google Scholar 

  • Zhu XR, Prospero JM, Savoie DL, Huang F, Huang T (1993) Particle size distributions of nitrate, non-sea-salt sulfate, methanesulfonate and sea-salt at Barbados

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saltzman, E.S. (1995). Ocean/Atmosphere Cycling of Dimethylsulfide. In: Delmas, R.J. (eds) Ice Core Studies of Global Biogeochemical Cycles. NATO ASI Series, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51172-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51172-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-51174-5

  • Online ISBN: 978-3-642-51172-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics