Skip to main content

Modelling Social Animal Aggregations

  • Conference paper

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 100))

Abstract

It is hard to find animals in nature that do not aggregate for one reason or another. The details of such aggregations are important because they influence numerous fundamental processes like mate-finding, prey-detection, predator avoidance, and disease transmission. Yet, despite the near universality of aggregation and its profound consequences, biologists have only recently begun to probe its underlying mechanisms. In this chapter we review theoretical approaches to animal aggregation, concentrating on aggregations which are caused by social interactions. We emphasize methods and limitations, and suggest what we think are the most promising avenues for future research. For an earlier review article on dynamical aspects of animal grouping consult Okubo (1986).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alt, W. (1980) Biased random walk models for Chemotaxis and related diffusion approximations. J. Math. Biol. 9:147–177.

    Article  MathSciNet  MATH  Google Scholar 

  • Alt, W. (1985) Degenerate diffusion equations with drift functionals modelling aggregation. Nonlinear Analysis, Theory, Methods & Applications. 9:811–836.

    Article  MathSciNet  MATH  Google Scholar 

  • Alt, W. (1990) Correlation analysis of two-dimensional locomotion paths. In: Biological Motion (eds. W. Alt and G. Hoffmann). Lecture Notes in Biomathematics. Vol. 89, Springer-Verlag, pp.584–565.

    Google Scholar 

  • Anderson, J. (1980) A stochastic model for the size offish schools. Fish. Bull. 79(2):315–323.

    Google Scholar 

  • Aoki, I. (1982) A simulation study on the schooling mechanism in fish. Bulletin of the Japanese Society of Scientific Fisheries. 48:1081–1088.

    Article  Google Scholar 

  • Aoki, I. (1984) Internal dynamics of fish schools in relation to inter-fish distance. Bulletin of the Japanese Society of Scientific Fisheries. 50:751–758.

    Article  Google Scholar 

  • Bovet, P. and S. Benhamou. (1988) Spatial analysis of animal’s movements using a correlated random walk model. J. Theor. Biol. 133:419–433.

    Article  Google Scholar 

  • Britton, N.F. (1989) Aggregation and the competitive exclusion principle. J. Theor. Biol. 136:57–66.

    Article  MathSciNet  Google Scholar 

  • Cantrell, R.S. and C. Cosner (1991) The effects of spatial heterogeneity in population dynamics. J. Math. Biol. 29:315–338.

    Article  MathSciNet  MATH  Google Scholar 

  • Childress, S. and J.K. Percus (1981) Nonlinear aspects of Chemotaxis. Math. Biosci. 56:217–237.

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen, D.S. and J.D. Murray (1981) A generalized diffusion model for growth and dispersal in a population. J. Math. Biol. 12:237–49.

    Article  MathSciNet  MATH  Google Scholar 

  • Dal Passo, R. and P. de Mottoni (1984) Aggregative effects for a reaction-advection equation. J. Math. Biol. 20:103–112.

    Article  MathSciNet  MATH  Google Scholar 

  • Dill, L.M., C.S. Holling and L.H. Palmer (1994) Predicting the 3-dimensional structure of animal aggregations from functional considerations: the role of information. In: Animal Aggregation: analysis, theory, and modelling (tentative title) (eds. J. Parrish and W. Hamner). Cambridge University Press, (in press).

    Google Scholar 

  • Duffy, D.C. and C. Wissel (1988) Models of fish school size in relation to environmental productivity. Ecol. Mod. 40:201–211.

    Article  Google Scholar 

  • Edelstein-Keshet, L. (1989) Mathematical Models in Biology. Random House, 586pp.

    Google Scholar 

  • Fife, P.C. (1979) Mathematical aspects of reacting and diffusing systems. Lecture Notes in Biomathematics. Vol. 28. Springer-Verlag, 186pp.

    Book  MATH  Google Scholar 

  • Gardiner, C.W. (1983) Handbook of Stochastic Methods. Springer-Verlag, 442pp.

    MATH  Google Scholar 

  • Goldsmith, A., H.C. Chiang, and A. Okubo (1980) Turning motion of individual midges. Annals of Entomol. Soc. America. 74:48–50.

    Google Scholar 

  • Grindrod, P. (1991) Patterns and Waves. Oxford University Press, 239pp.

    MATH  Google Scholar 

  • Grünbaum, D. (1992) Aggregation models of individuals seeking a target density. Ph.D. dissertation, Cornell University.

    Google Scholar 

  • Grünbaum, D. (1994a) Translating stochastic density-dependent individual behavior to a continuum model of animal swarming. J. Math. Biol., (in press).

    Google Scholar 

  • Grünbaum, D. (1994b) Gradient-following in schools and swarms. In: Animal Aggregation: analysis, theory, and modelling (tentative title) (eds. J. Parrish and W. Hamner). Cambridge University Press, (in press).

    Google Scholar 

  • Gueron, S. and S.A. Levin (1993) Self organization of front patterns in large wildebeest herds. (manuscript).

    Google Scholar 

  • Gueron, S. and N. Liron (1989) A model of herd grazing as a travelling wave, Chemotaxis and stability. J. Math. Biol. 27:595–608.

    Article  MathSciNet  MATH  Google Scholar 

  • Hara, I. (1984) Shape and size of Japanese sardine school in the waters off southeastern Hokkaido on the basis of acoustic and aerial surveys. Bulletin of the Japanese Society of Scientific Fisheries. 51:41–46.

    Article  Google Scholar 

  • Heppner, F. and U. Grenander (1990) A stochastic nonlinear model for coordinated bird flocks. In: The Ubiquity of Chaos (ed. S. Krusna). AAAS Publications, Washington, D.C., pp. 233–238.

    Google Scholar 

  • Hilborn, R. (1991) Modeling the stability of fish schools: exchange of individual fish between schools of skipjack tuna (Katsuwonu pelamis). Can. J. Fish. Aquat. Sci. 48:1081–1091.

    Article  Google Scholar 

  • Holmes, E. E. (1993) Are diffusion models too simple? A comparison with telegraph models of invasion. Amer. Nat. (in press).

    Google Scholar 

  • Holmes, E. E., M. A. Lewis, J. E. Banks, R. R. Veit (1993) Partial differential equations in ecology: spatial interactions and population dynamics. Ecology, (in press).

    Google Scholar 

  • Huth, A. and C. Wissel (1990) The movement of fish schools: a simulation model. In: Biological Motion (eds. W. Alt and G. Hoffmann). Lecture Notes in Biomathematics. Vol. 89, Springer-Verlag, pp. 577–590.

    Google Scholar 

  • Huth, A. and C. Wissel (1992) The simulation of the movement offish schools. J. Theor. Biol. 156:365–385.

    Article  Google Scholar 

  • Inagaki, T., W. Sakamoto and T. Kuroki (1976) Studies on the schooling behavior of fish — II: Mathematical modelling of schooling form depending on the intensity of mutual force between individuals. Bulletin of the Japanese Society of Scientific Fisheries. 42(3):265–270.

    Article  Google Scholar 

  • Ikawa, T. and H. Okabe (1994) Reconstructing three-dimensional positions: a study of swarming mosquitoes. In: Animal Aggregation: analysis, theory, and modelling (tentative title) (eds. J. Parrish and W. Hamner). Cambridge University Press, (in press).

    Google Scholar 

  • Kareiva, P. and G. Odell (1987) Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search. Amer. Nat. 130:207–228.

    Article  Google Scholar 

  • Kawasaki, K. (1978) Diffusion and the formation of spatial distribution. Mathematical Sciences. 16(183):47–52.

    Google Scholar 

  • Keller, E.F. and L.A. Segel (1971) Model for Chemotaxis. J. Theor. Biol. 30: 225–234.

    Article  Google Scholar 

  • Khait, A. and L.A. Segel (1984) A model for the establishment of pattern by positional differentiation with memory. J. Theor. Biol. 110:1135–53.

    Article  MathSciNet  Google Scholar 

  • Lara Ochoa, F. (1984) A generalized reaction diffusion model for spatial structure formed by mobile cells. Biosystems. 17:35–50.

    Article  Google Scholar 

  • Levin, S.A. (1974) Dispersion and population interactions. Amer. Nat. 108:207–228.

    Article  Google Scholar 

  • Levin, S.A. (1977) A more functional response to predator-prey stability. Amer. Nat. 111:381–383.

    Article  Google Scholar 

  • Levin, S.A. (1981) Models of population dispersal. In: Differential Equations and Applications in Ecology, Epidemics and Population Problems (eds. S. N. Busenberg and K. Cooke). Academic Press, pp. 1–18.

    Google Scholar 

  • Levin, S.A. (1986). Random walk models and their implications. In: Mathematical Ecology (eds. T. G. Hallam and S. A. Levin) Biomathematics. Vol. 17, Springer-Verlag, pp. 149–154.

    Chapter  Google Scholar 

  • Levin, S.A. and L.A. Segel (1976) Hypothesis for origin of planktonic patchiness. Nature. 259:659.

    Article  Google Scholar 

  • Levin, S.A. and L. A. Segel (1982) Models of the influence of predation on aspect diversity in prey population. J. Math. Biol. 14:253–284.

    Article  MathSciNet  MATH  Google Scholar 

  • Levin, S.A., A. Morin and T. M. Powell (1989) Pattern and processes in the distribution and dynamics of Antarctic krill. Scientific Report VII/BG. 20:281–296, Report for the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR).

    Google Scholar 

  • Levine, H. and W. Reynolds (1991) Streaming instability of aggregating slime mold amoebae. Phys. Rev. Lett. 66:2400–2403.

    Article  Google Scholar 

  • Maini, P.K., D.L. Benson and J.A. Sherratt (1992) Pattern formation in reaction-diffusion models with spatially inhomogeneous diffusion coefficients. IMA J. Mathematics Applied in Medicine and Biology. 9:197–213.

    Article  MathSciNet  MATH  Google Scholar 

  • Malchow, H. (1988) Spatial patterning of interacting and dispersing populations. Mem. Fac. Sci. Kyoto University (Ser. Biology). 13:83–100.

    Google Scholar 

  • Mangel, M. (1987) Simulation of southern ocean krill fisheries. SC-CAMLR-VII/BG. 22, Report for CCAMLR.

    Google Scholar 

  • Marsh, L.M. and R.E. Jones (1988) The form and consequences of random walk movement models. J. Theor. Biol. 133:113–131.

    Article  Google Scholar 

  • Matuda, K. and N. Sannomiya (1980) Computer simulation of fish behavior in relation to fishing gear —I: Mathematical model of fish behavior. Bulletin of the Japanese Society of Scientific Fisheries. 46(6):689–697.

    Article  Google Scholar 

  • Matuda, K. and N. Sannomiya (1985) Computer simulation of fish behavior in relation to a trap model. Bulletin of the Japanese Society of Scientific Fisheries. 51(1):33–39.

    Article  Google Scholar 

  • McFarland, W.N. and S.A. Moss (1967) Internal behavior in fish schools. Science. 156(3772):260–262.

    Article  Google Scholar 

  • Mimura, M. and M. Yamaguti (1982) Pattern formation in interacting and diffusing systems in population biology. Advances in Biophysics. 15:19–65.

    Article  Google Scholar 

  • Morin, A., A. Okubo and K. Kawasaki (1989) Acoustic data analysis and models of krill spatial distribution. Science Committee for the Conservation of Antarctic Marine Living Resources, Selected Scientific Papers, pp.311–329, Hobart, Australia.

    Google Scholar 

  • Mullen, A.J. (1989) Aggregation of fish through variable diffusivity. Fishery Bulletin, USA. 87:353–362.

    Google Scholar 

  • Murray, J.D. (1989) Mathematical Biology. Springer-Verlag, 767pp.

    MATH  Google Scholar 

  • Nagai, T. and M. Mimura (1983) Asymptotic behavior for a nonlinear degenerate diffusion equation in population dynamics. SIAM J. Appl. Math. 43:449–464.

    Article  MathSciNet  MATH  Google Scholar 

  • Niwa, H. (1991) Features offish grouping and migration determined by random movement of the composite individuals. In: Noise in Physical Systems and 1/f Fluctuations (eds. T. Musha, S. Sato and M. Yamamoto). Ohm-Sha, Tokyo, pp.415–418.

    Google Scholar 

  • Niwa, H. (1993) Self-organizing dynamic model offish schooling. J. Theor. Biol (submitted).

    Google Scholar 

  • O’Brien, D.P. (1989) Analysis of the internal arrangement of individuals within crustacean aggregations (Euphauiascea, Mysidacea). J. Exp. Mar. Biol. Ecol. 128:1–30.

    Article  Google Scholar 

  • Odendaal, F.J., P. Turchin and F.R. Stermitz (1988) An incidental-effect hypothesis explaining aggregation of males in a population of Euphydryas anicia. Amer. Nat. 132:735–749.

    Article  Google Scholar 

  • Okubo, A. (1980) Diffusion and Ecological Problems: Mathematical Models. Biomathematics Vol. 10. Springer-Verlag. 254pp.

    MathSciNet  Google Scholar 

  • Okubo, A. (1986) Dynamical aspects of animal grouping: swarms, schools, flocks and herds. Advances in Biophysics 22:1–94.

    Article  Google Scholar 

  • Okubo, A., D.J. Bray, and H.C. Chiang (1980) Use of shadows for studying the three dimensional structure of insect swarms. Annals of Entomol. Soc. America. 74:48–50.

    Google Scholar 

  • Okubo, A. and J.J. Anderson (1984) Mathematical models for Zooplankton swarms: their formation and maintenance. The Oceanography Report, EOS, Amer. Geophy. Union, Washington, pp.731–733.

    Google Scholar 

  • Othmer, H.G., S.R. Dunbar and W. Alt (1988) Models of dispersal in biological systems. J. Math. Biol. 26:263–298.

    Article  MathSciNet  MATH  Google Scholar 

  • Parrish, J. (1989) Re-examining the selfish herd: are central fish safer? Anim. Behav. 38:1048–1053.

    Article  Google Scholar 

  • Papoulis, A. (1984) Probability, Random Variables, and Stochastic Processes. McGraw-Hill. 576pp.

    MATH  Google Scholar 

  • Pfistner, B. (1990) A one dimensional model for the swarming behavior Myxobacteria. In: Biological Motion (eds. W. Alt and G. Hoffmann). Lecture Notes in Biomathematics. Vol.89, Springer-Verlag, pp.584–565.

    Google Scholar 

  • Pfistner, B. and W. Alt (1990) A two dimensional random walk model for swarming behavior. In: Biological Motion (eds. W. Alt and G. Hoffmann). Lecture Notes in Biomathematics. Vol. 89, Springer-Verlag, pp.584–565.

    Google Scholar 

  • Pitcher, T. (1983) Heuristic definitions of shoaling behavior. Anim. Behav. 31:611–613.

    Article  Google Scholar 

  • Pitcher, T. (1986) Functions of shoaling behavior in teleosts. In: The Behavior of Teleost Fishes (ed. Pitcher, T.J.), Johns Hopkins University Press, Baltimore, Md. pp.415–418.

    Google Scholar 

  • Prins, H.H. (1989) Buffalo herd structure and its repercussions for condition of individual African buffalo cows. Ethology. 81:47–71.

    Article  Google Scholar 

  • Risken, H. (1984) The Fokker-Planck Equation. Springer-Verlag. 454pp.

    Book  MATH  Google Scholar 

  • Rivera, M.A., R.T. Tranquillo, H.M. Buettner, and D.A. Lauffenburger (1989) Transport models for chemotactic cell populations based on individual cell behavior. Chem. Engr. Sci. 44:2881–2897.

    Article  Google Scholar 

  • Rubinow, S.I., L.A. Segel, and W. Ebel (1981) A mathematical framework for the study of morphogenetic development in the slime mold. J. Theor. Biol. 91:99–113.

    Article  Google Scholar 

  • Sakai, S. (1973) A model for group structure and its behavior. Biophysics. 13:82–90.

    Article  Google Scholar 

  • Satsuma, J. (1983) Exact solutions of nonlinear equations with singular integral terms. In: Proceedings of RIMS Symposium on Non-Linear Integrable Systems: classical theory and quantum theory (eds. M. Jimbo and T. Miwa). World Scientific Publ. Co., Singapore, pp. 183–193.

    Google Scholar 

  • Segel, L.A. (1982) Taxes in cellular ecology. In: Mathematical Ecology (eds. S. A. Levin and T. G. Hallam). Lecture Notes in BioMathematics. Vol. 54, Springer-Verlag, pp.407–424.

    Google Scholar 

  • Segel, L.A. (1978) Mathematical models for cellular behavior. In: Studies in Mathematical Biology. Part I: Cellular Behavior and the Development of Pattern (ed. S.A. Levin). Math. Assoc. Amer. pp. 156–191.

    Google Scholar 

  • Segel, L.A. and J.L. Jackson (1972) Dissipative structure: an explanation and an ecological example. J. Theor. Biol. 37:545–559.

    Article  Google Scholar 

  • Seno, H. (1990) A density-dependent diffusion model of shoaling of nesting fish. Ecol. Mod. 51:217–226.

    Article  Google Scholar 

  • Shigesada, N. and E. Teramoto (1978) A consideration on the theory of environmental density. Japanese J. Ecol. 28:1–8.

    Google Scholar 

  • Shigesada, N. K. Kawasaki and E. Teramoto (1979) Spatial segregation of interacting species. J. Theor. Biol. 79:83–99.

    Article  MathSciNet  Google Scholar 

  • Shinn, E.A. and G.E. Long (1986) Technique for 3-D analysis of Cheumatopsyche pettiti (Trichoptera:Hydropsychidae) swarms. Environmental Entomology. 15:355–359.

    Google Scholar 

  • Sinclair, A.R.E. (1977) The African Buffalo. University of Chicago Press, 355pp.

    Google Scholar 

  • Skellam, J.G. (1951) Random dispersal in theoretical populations. Biometrika. 38:196–218.

    MathSciNet  MATH  Google Scholar 

  • Smith, P.E. (1970) The horizontal dimension and abundance of fish schools in the upper mixed layer as measured by sonar. In: Proceedings of an International Conference on Biological Sound Scattering in the Ocean (ed. G.B. Farquhar). U.S. Gov’t Printing Office, Washington D.C.

    Google Scholar 

  • Steele, J.H. and E.W. Henderson (1992) A simple model for plankton patchiness. J. Plankton Research. 14:1397–1403.

    Article  Google Scholar 

  • Strand, S.W. and W.M. Hamner. (1990) Schooling behavior of Antarctic krill (Euphausia superba) in laboratory aquaria: reactions to chemical and visual stimuli. Mar. Biol. 106:355–359.

    Article  Google Scholar 

  • Suzuki, R. and S. Sakai (1973) Movement of a group of animals. Biophysics. 13:281–282.

    Article  Google Scholar 

  • Timm, U. and A. Okubo (1992) Diffusion-driven instability in a predator-prey system with time-varying diffusivities. J. Math. Biol. 30:307–320.

    Article  MathSciNet  MATH  Google Scholar 

  • Tranquilo, R.T. (1990) Models of chemical gradient sensing by cells. In: Biological Motion (eds. W. Alt and G. Hoffmann). Lecture Notes in Biomathematics. Vol. 89, Springer-Verlag, pp.415–441.

    Google Scholar 

  • Turchin, P. (1989) Population consequences of aggregative movement. J. Animal Ecol. 58:75–100.

    Article  Google Scholar 

  • Turchin, P. and J. Parrish (1994) Analyzing movements of animals in congregations. In: Animal Aggregation: analysis, theory, and modelling (tentative title), (eds. J. Parrish and W. Hamner) Cambridge University Press, (in press).

    Google Scholar 

  • Turing, A.M. (1952) The chemical basis of morphogenisis. Phil. Trans. Roy. Soc. Lond. B 237:37–72.

    Article  Google Scholar 

  • Tyson, J.J., K.A. Alexander, V.S. Manoranjan, and J.D. Murray (1989) Spiral waves of cyclic AMP in a model of slime mold aggregation. Physica D. 34:193–207.

    Article  MathSciNet  MATH  Google Scholar 

  • van Kampen, N.G. (1992) Stochastic Processes in Physics and Chemistry (revised and enlarged edition). North-Holland Publ. Co., Amsterdam, 464pp.

    Google Scholar 

  • Warburton, K. and J. Lazarus (1991) Tendency-distance models of social cohesion in animal groups. J. Theor. Biol. 150:473–488.

    Article  Google Scholar 

  • Watkins, J.L. (1986) Variations in the size of Antarctic krill, Euphausia superba Dana, in small swarms. Mar. Ecol. Prog. Ser. 31:67–73.

    Article  Google Scholar 

  • Watkins, J.L., D.J. Morris, C. Ricketts and J. Priddle (1986) Differences between swarms of Antarctic krill and some implications for sampling krill populations. Mar. Biol. 93:137–146.

    Article  Google Scholar 

  • Weber, L.H., S.Z. El-Sayed and I. Hampton (1986) The variance spectra of phytoplankton, krill, and water temperature in the Antarctic Ocean south of Africa. Deep-Sea Research. 33:1327–1343.

    Article  Google Scholar 

  • Yen, J. and E.A. Bryant (1994) Aggregative behavior in zooplankton:phototactic swarming in 4 developmental stages of Scottolana canadensis (Copepoda,harpacticoida). In: Animal Aggregation: analysis, theory, and modelling (tentative title) (eds. J. Parrish and W. Hamner). Cambridge University Press, (in press).

    Google Scholar 

  • Zaferman, M.L. and L.I. Serebrov (1987) A geometric model of the distribution of fish in a school. J. Icthyol. 27(6): 145–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grünbaum, D., Okubo, A. (1994). Modelling Social Animal Aggregations. In: Levin, S.A. (eds) Frontiers in Mathematical Biology. Lecture Notes in Biomathematics, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50124-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50124-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-50126-5

  • Online ISBN: 978-3-642-50124-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics