Skip to main content

Poly(ADP-Ribose) Polymerase Is Required for Maintenance of Genomic Integrity During Base Excision Repair

  • Chapter
DNA Repair

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 12))

Abstract

In eukaryotes, DNA strand breaks introduced either directly by ionizing radiations or indirectly following enzymatic incision of a DNA-base lesion trigger immediately the synthesis of poly(ADP-ribose) by the enzyme poly(ADP-ribose) polymerase (PARP; EC 2.4.2.30). At a site of breakage, PARP catalyzes the transfer of the ADP-ribose moiety from its substrate, NAD+, to a limited number of protein acceptors (heteromodification) involved in chromatin architecture (histones H1, H2B, lamin B) or in DNA metabolism (topoisomerases, DNA replication factors) including PARP itself (automodification) (for reviews see Althaus and Richter 1987; Lautier et al. 1993; Oei et al. 1997). These modified proteins, mainly DNA-binding proteins, carrying chains of negatively charged ADP-ribose polymers, lose their affinity for DNA and consequently are inactivated. The short half-life of the polymer is attributed to the high activity of poly(ADP-ribose) glycohydrolase (PARG) which cleaves the ribose-ribose bond (Alvarez-Gonzalez and Althaus 1989; Lin et al. 1997). Poly(ADP-ribosylation) is therefore an immediate and transient posttranslational modification of nuclear proteins induced by DNA strand breaks (Fig. 1A).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Althaus FR, Richter C (1987) ADP-ribosylation of proteins. Enzymology and biological significance. Mol Biol Biochem Biophys 37: 1–237

    CAS  PubMed  Google Scholar 

  • Alvarez-Gonzalez R, Althaus FR (1989) Poly(ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents. Mutat Res 218: 67–74

    CAS  PubMed  Google Scholar 

  • Alves Miranda EA, Dantzer F, O’Farrell M, de Murcia G, Ménissier-de Murcia J (1995) Characterisation of a gain-of-function mutant of poly(ADP-ribose) polymerase. Biochem Biophys Res Commun 212: 317–325

    Article  Google Scholar 

  • Avila MA, Velasco JA, Smulson ME, Dritschilo A, Castro R, Notario V (1994) Functional expression of human poly(ADP-ribose) polymerase in Schizosaccharomyces pombe results in mitotic delay at G1, increased mutation rate, and sensitization to radiation. Yeast 10: 1003–1017

    Article  CAS  PubMed  Google Scholar 

  • Bell CE, Eisenberg D (1996) Crystal structure of Diphtheria toxin bound to nicotinamide adenine dinucleotide. Biochemistry 35: 1137–1149

    Article  CAS  PubMed  Google Scholar 

  • Berger N (1985) Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res 101: 4–15

    Article  CAS  PubMed  Google Scholar 

  • Boorstein RJ, Pardee AB (1984) 3-Aminobenzamide is lethal to MMS-damaged human fibroblasts primarily during S phase. J Cell Physiol 120: 345–353

    Article  CAS  PubMed  Google Scholar 

  • Bork P, Hofmann K, Bucher P, Neuwald AF, Altschul SF, Koonin EV (1997) A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J 11: 68–76

    CAS  PubMed  Google Scholar 

  • Buki K, Bauer P, Hakam A, Kun E (1995) Identification of domains of poly(ADP-ribose) polymerase for protein binding and self-association. J Biol Chem 270: 3370–3377

    Article  CAS  PubMed  Google Scholar 

  • Callebaut I, Mornon JP (1997) From BRCA1 to RAP1: a widespread BRCT module closely associated with DNA repair. FEBS Lett 400: 25–30

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Petzold SJ, Berger SJ, Berger NA (1987) Strategy for selection of cell variants deficient in poly(ADP-ribose) polymerase. Exp Cell Res 172: 245–257

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Hirschler NV, Petzold SJ, Berger SJ, Berger NA (1989) Mutant cells defective in poly(ADP-ribose) synthesis due to stable alteration in enzyme activity or substrate availability. Exp Cell Res 184: 1–15

    Article  CAS  PubMed  Google Scholar 

  • Concha II, Figueroa J, Concha MI, Ueda K, Burzio LO (1989) Intracellular distribution of poly(ADP-ribose) synthetase in rat spermatogenic cells. Exp Cell Res 180: 353–366

    Article  CAS  PubMed  Google Scholar 

  • Critchlow S, Bowater RP, Jackson S (1997) Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol 7: 588–598

    Article  CAS  PubMed  Google Scholar 

  • Dantzer F, Nasheuer HP, Vonesch JL, de Murcia G, Menissier-de Murcia (1998) Functional association of poly(ADP-ribose) polymerase with DNA polymerase α-primase complex: a link between DNA strand break detection and DNA replication. Nucleic Acids Res 26: 1891–1898

    Article  CAS  PubMed  Google Scholar 

  • de Murcia G, Ménissier-de Murcia J (1994) Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci 19: 172–176

    Article  PubMed  Google Scholar 

  • de Murcia G, Jongstra-Bilen J, Ittel M, Mandel P, Delain E (1983) Poly(ADP-ribose) polymerase automodification and interaction with DNA: electron microscopic visualization. EMBO J 2: 543–548

    PubMed  Google Scholar 

  • Ding R, Smulson M (1994) Depletion of nuclear poly(ADP-ribose) polymerase by antisense RNA expression: influences on genomic stability, chromatin organization and carcinogen cytotoxicity. Cancer Res 54: 4627–4634

    CAS  PubMed  Google Scholar 

  • Ding R, Pommier Y, Kang V, Smulson M (1992) Depletion of poly(ADP-ribose) polymerase by antisense RNA expression results in a delay in DNA strand breaks rejoining. J Biol Chem 267: 12804–12812

    CAS  PubMed  Google Scholar 

  • Earnshaw WC (1995) Apoptosis: lessons from in vitro systems. Trends Cell Biol 5: 217–219

    Article  CAS  PubMed  Google Scholar 

  • Eliasson MJ, Sampei K, Mandir A, Hum P, Traystman R, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder S, Dawson V (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3: 1089–1095

    Article  CAS  PubMed  Google Scholar 

  • Ferro AM, Higgins NP, Olivera BM (1983) Poly(ADP-ribosyl)ation of a DNA topoisomerase. J Biol Chem 258: 6000–6003

    CAS  PubMed  Google Scholar 

  • Giner H, Simonin F, de Murcia G, Ménissier-de Murcia J (1992) Overproduction and large scale purification of the human poly(ADP-ribose) polymerase using a baculovirus expression system. Gene 114: 279–283

    Article  CAS  PubMed  Google Scholar 

  • Gradwohl G, Mazen A, de Murcia G (1987) Poly(ADP-ribose) polymerase forms loops with DNA. Biochem Biophys Res Commun 148: 913–919

    Article  CAS  PubMed  Google Scholar 

  • Gradwohl G, Ménissier-de Muricia J, Molinete M, Simonin F, Koken M, Hoeijmakers JH, de Murcia G (1990) The second zinc-finger domain of poly(ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA. Proc Natl Acad Sci USA 87: 2990–2994

    Article  CAS  PubMed  Google Scholar 

  • Griesenbeck J, Oei SL, Mayer-Kuckuk P, Ziegler M, Buchlow G, Schweiger M (1997) Protein-protein interaction of the human poly(ADP-ribose)polymerase depends on the functional state of the enzyme. Biochemistry 36: 7297–7304

    Article  CAS  PubMed  Google Scholar 

  • Ikejima M, Noguchi S, Yamashita R, Ogura T, Sugimura T, Gill DM, Miwa M (1990) The zinc fingers of human poly(ADP-ribose) polymerase are differentially required for the recognition of DNA breaks and nicks and the consequent enzyme activation. Other structures recognize intact DNA. J Biol Chem 265: 21907–21913

    CAS  PubMed  Google Scholar 

  • Jacobson EL, Meadows R, Measel J (1985) Cell cycle perturbations following DNA damage in the presence of ADP-ribosylation inhibitors. Carcinogenesis 6: 711–714

    Article  CAS  PubMed  Google Scholar 

  • Jund S, Alves Miranda E, Ménissier-de Murcia J, Niedergang C, Delarue M, Schulz G, de Murcia G (1994) Crystallization and X-ray crystallographic analysis of recombinant chicken poly(ADP-ribose) polymerase catalytic domain produced in Sf9 insect cells. J Mol Biol 244: 114–116

    Article  Google Scholar 

  • Kaiser P, Auer B, Schweiger M (1992) Inhibition of cell proliferation in Saccharomyces cerevisiae by expression of human NAD+. ADP-ribosyltransferase requires the DNA binding domain (“zinc fingers”). Mol Gen Genet 232: 231–239

    CAS  PubMed  Google Scholar 

  • Kameshita I, Matsuda Z, Tanigushi T, Shizuta Y (1984) Poly(ADP-ribose)synthetase. Separation and identification of three proteolytic fragments as the substratebinding domain, the DNA binding domain, and the automodification domain. J Biol Chem 259: 4770–4776

    CAS  PubMed  Google Scholar 

  • Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG (1993) Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53: 3976–3985

    CAS  PubMed  Google Scholar 

  • Kawaichi H, Ueda K, Hayaishi O (1981) Multiple autopoly(ADP-ribosyl)ation of rat liver poly(ADP-ribose) synthetase: mode of modification and properties of automodified synthetase. J Biol Chem 256: 9483–9489

    CAS  PubMed  Google Scholar 

  • Kim H, Jacobson MK, Rolli V, Ménissier-de Murcia J, Reinbolt J, Simonin F, Ruf A, Schulz G, de Murcia G (1997) Photoaffinity labelling of human poly(ADP-ribose) polymerase catalytic domain. Biochem J 322: 469–475

    CAS  PubMed  Google Scholar 

  • Kovalenko O, Plug A, Haaf T, Gonda D, Ashley T, Ward D, Radding C, Golub E (1996) Mammalian ubiquitin-conjugating enzyme Ubc9 interacts with Rad51 recombination protein and localizes in synaptonemal complexes. Proc Natl Acad Sci USA 93: 2958–2963

    Article  CAS  PubMed  Google Scholar 

  • Kreimeyer A, Wielckens K, Adamietz P, Hiltz H (1984) DNA repair associated ADP-ribosylation in vivo. Modification of histone HI differs from that of the principal acceptor proteins. Biol Chem 259: 890–896

    CAS  Google Scholar 

  • Kubota Y, Nash RA, Klungland A, Schär P, Barnes DE, Lindhai T (1996) Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase β and the XRCC1 protein. EMBO J 15: 6662–6670

    CAS  PubMed  Google Scholar 

  • Küpper JH, de Murcia G, Bürkle A (1990) Inhibition of poly(ADP-ribosyl)ation by overexpressing the poly(ADP-ribose) polymerase DNA-binding domain in mammalian cells. J Biol Chem 265: 18721–18724

    PubMed  Google Scholar 

  • Küpper JH, Müller M, Jacobson M, Tatsumi-Miyajima J, Coyle D, Jacobson E, Bürkle A (1995) Trans-dominant inhibition of poly (ADP-ribosylation) sensitizes cells against gamma-irradiation and N-methyl-N‵-nitro-N-nitrosoguanidine but does not limit DNA replication of a Polyomavirus replicon. Mol Cell Biol 15: 3154–3163

    PubMed  Google Scholar 

  • Küpper JH, Müller M, Bürkle A (1996) Trans-dominant inhibition of poly ADP-ribosylation potentiates carcinogen-induced gene amplification in SV40-transformed Chinese hamster cells. Cancer Res 56: 2715–2717

    PubMed  Google Scholar 

  • Lautier D, Lagueux J, Thibodeau J, Ménard L, Poirier GG (1993) Molecular and biochemical features of poly(ADP-ribose) metabolism. Mol Cell Biochem 122: 171–193

    Article  CAS  PubMed  Google Scholar 

  • Le Cam E, Fack F, Ménissier-de Murcia J, Cognet JAH, Barbin A, Sarantoglou V, Révet B, Delain E, de Murcia G (1994) Conformai analysis of a 139 base-pair DNA fragment containing a single-stranded break and its interaction with human poly(ADP-ribose) polymerase. J Mol Biol 235: 1062–1071

    Article  PubMed  Google Scholar 

  • Leist M, Single B, Künstle G, Volbracht C, Hentze H, Nicotera P (1997) Apoptosis in the absence of poly(ADP-ribose) polymerase. Biochem Biophys Res Commun 233: 518–522

    Article  CAS  PubMed  Google Scholar 

  • Lepiniec L, Babiychuk E, Kushnir S, Van Montagu M, Inzé D (1995) Characterization of an Arabidopsis thaliana cDNA homologue to animal poly(ADP-ribose) polymerase. FEBS Lett 364: 103–108

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Arne JC, Aboul-Ela N, Jacobson E, Jacobson M (1997) Isolation and characterization of the cDNA encoding bovine poly(ADP-ribose) glycohydrolase. J Biol Chem 272: 11895–11901

    Article  CAS  PubMed  Google Scholar 

  • Mackey ZB, Ramos W, Levin DS, Walter CA, McCarrey JR, Tomkinson A (1997) An alternative splicing event which occurs in mouse pachytene spermatocytes generates a form of DNA ligase III with distinct biochemical properties that may function in meiotic recombination. Mol Cell Biol 17: 989–998

    CAS  PubMed  Google Scholar 

  • Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G (1998) XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 18: 3563–3571

    CAS  PubMed  Google Scholar 

  • Masson M, Rolli V, Dantzer F, Trucco C, Schreiber V, Fribourg S, Molinete M, Ruf A, Alves Miranda E, Niedergang C, Hunting D, Gowans B, Schulz GE, Ménissier de Murcia J, de Murcia G (1995) Poly (ADP-ribose) polymerase: structure-function relationship. Biochimie 77: 456–461

    Article  CAS  PubMed  Google Scholar 

  • Masson M, Ménissier-de Murcia J, Mattei MG, de Murcia G, Niedergang CP (1997) Poly (ADP-ribose)polymerase interacts with a novel human ubiquitin conjugating enzyme: hUbc9. Gene 190: 287–296

    Article  CAS  PubMed  Google Scholar 

  • Masutani M, Nozaki T, Nishiyama E, Shimokawa T, Tachi Y, Suzuki H, Nakagama H, Wakabayashi K, Sugimura T (1998) Function of poly(ADP-ribose) polymerase in response to DNA damage: gene-disruption study in mice. Mol Cell Biochem (in press)

    Google Scholar 

  • Mazen A, Ménissier-de Murcia J, Molinete M, Simonin F, Gradwohl G, Poirier GG, de Murcia G (1989) Poly(ADP-ribosose) polymerase: a novel finger protein. Nucleic Acids Res 17: 4689–4698

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Alvarez H, Alvarez-Gonzales R (1993) Poly(ADP-ribose) polymerase is a catalytic dimer and the automodification reaction is intermolecular. J Biol Chem 268: 22575–22580

    CAS  PubMed  Google Scholar 

  • Ménissier-de Murcia J, Molinete M, Gradwohl G, Simonin F, de Murcia G (1989) Zinc-binding domain of poly(ADP-ribose) polymerase participates in the recognition of single strand breaks in DNA. J Mol Biol 210: 229–233

    Article  PubMed  Google Scholar 

  • Menissier-de Murcia J, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, Olivier FJ, Masson M, Dierich A, LeMeur M, Walztinger C, Chambon P, de Murcia G (1997) Requirement of poly(ADP-ribose)polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA 94: 7303–7307

    Article  CAS  Google Scholar 

  • Merritt A, Allen T, Potten C, Hickman JA (1997) Apoptosis in small intestinal epithelia from p53-null mice: evidence for a delayed, p53-independent G2/M-associated cell death after y-irradiation. Oncogene 14: 2759–2766

    Article  CAS  PubMed  Google Scholar 

  • Molinete M, Vermeulen W, Burkle A, Ménissier-de Murcia J, Kupper JH, Hoeijmakers JH, de Murcia G (1993) Overproduction of the poly (ADP-ribose) polymerase DNA-binding domain blocks alkylation-induced DNA repair synthesis in mammalian cells. EMBO J 12: 2109–2117

    CAS  PubMed  Google Scholar 

  • Murray A (1995) Cyclin unbiquitination: destructive end of mitosis. Cell 81: 149–152

    Article  CAS  PubMed  Google Scholar 

  • Nash RA, Caldecott K, Barnes DE, Lindahl T (1997) XRCC1 protein interacts with one of two distinct forms of DNA ligase III. Biochemistry 36: 5207–5211

    Article  CAS  PubMed  Google Scholar 

  • Nurse P (1994) Ordering S phase and M phase in the cell cycle. Cell 79: 547–550

    Article  CAS  PubMed  Google Scholar 

  • Nicholson D, Thornberry N (1997) Caspases: killer proteases. Trends Biochem Sci 22: 299–306

    Article  CAS  PubMed  Google Scholar 

  • Oei SL, Griesenbeck J, Schweiger M (1997) The role of poly ADP-ribosylation. Rev Physiol Biochem Pharmacol 131: 4135–4137

    Google Scholar 

  • Ogura T, Takenouchi N, Yamaguchi M, Matsukage A, Sugimura T, Esumi H (1990) Striking similarity of the distribution patterns of the poly(ADP-ribose) polymerase and DNA polymerase β among various mouse organs. Biochem Biophys Res Commun 172: 377–384

    Article  CAS  PubMed  Google Scholar 

  • Osmani S, Ye X (1997) Targets of checkpoints controlling mitosis: lessons from lower eukaryotes. Trends Cell Biol 7: 283–288

    Article  CAS  PubMed  Google Scholar 

  • Plug AW, Clairmont CA, Sapi E, Ashley T, Sweasy J (1997) Evidence for a role for DNA polymerase β in mammalian meiosis. Proc Natl Acad Sci USA 94: 1327–1331

    Article  CAS  PubMed  Google Scholar 

  • Rolli V, O’Farrell M, Ménissier-de Murcia J, de Murcia G (1997) Random mutagenesis of the poly(ADP-ribose) polymerase catalytic domain reveals amino acids involved in polymer branching. Biochemistry 36: 12147–12154

    Article  CAS  PubMed  Google Scholar 

  • Ruf A, Ménissier-de Murcia J, de Murcia G, Schulz GE (1996) Structure of the catalytic fragment of poly(ADP-ribose)polymerase from chicken. Proc Natl Acad Sci USA 93: 7481–7485

    Article  CAS  PubMed  Google Scholar 

  • Satoh MS, Lindahl T (1992) Role of poly(ADP-ribose) formation in DNA repair. Nature 356: 356–358

    Article  CAS  PubMed  Google Scholar 

  • Satoh MS, Poirier GG, Lindahl T (1994) Dual function for poly (ADP-ribose) synthesis in response to DNA strand breakage. Biochemistry 33: 7099–7106

    Article  CAS  PubMed  Google Scholar 

  • Sawaya M, Prasad R, Wilson S, Kraut J, Pelletier H (1997) Crystal structures of human DNA polymerase β complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry 36: 11205–11215

    Article  CAS  PubMed  Google Scholar 

  • Schreiber V, Molinete M, Boeuf H, de Murcia G, Ménissier-de Murcia J (1992) The human poly(ADP-ribose) polymerase nuclear localization signal is a bipartite element functionally separate from DNA binding and catalytic activity. EMBO J 11: 3263–3269

    CAS  PubMed  Google Scholar 

  • Schreiber V, Hunting D, Trucco C, Gowans B, Grunwald D, de Murcia G, Ménissier de Murcia J (1995) A dominant-negative mutant of human poly(ADP-ribose) polymerase affects cell recovery and chromosome stability following DNA damage. Proc Natl Acad Sci USA 11: 4753–4757

    Article  Google Scholar 

  • Seeberg E, Eide L, Bjoras M (1995) The base excision repair pathway. Trends Biochem Sci 20: 391–397

    Article  CAS  PubMed  Google Scholar 

  • Shall S (1984) ADP-ribose in DNA repair: a new component of DNA excision repair. Adv Radiat Biol 11: 1–69

    CAS  Google Scholar 

  • Simbulan CMG, Suzuki M, Izuta S, Sakurai T, Savoysky E, Kojima K, Miyahara Y, Yoshida S (1993) Poly(ADP-ribose) polymerase stimulates DNA polymerase a by physical association. J Biol Chem 268: 93–99

    CAS  PubMed  Google Scholar 

  • Simbulan CMG, Rosenthal DS, Hilz H, Hickey R, Malkas L, Applegren N, Wu Y, Bers G, Smulson M (1996) The expression of poly (ADP-ribose) polymerase during differentiation-linked DNA replication reveals that it is a component of the multiprotein DNA replication complex. Biochemistry 35: 11622–11633

    Article  Google Scholar 

  • Simonin F, Ménissier-de Murcia J, Poch O, Muller S, Gradwohl G, Molinete M, Penning C, Keith G, de Murcia G (1990) Expression and site-directed mutagenesis of the catalytic domain of human poly(ADP-ribose) polymerase in Escherichia coli. Lysine 893 is critical for activity. J Biol Chem 265: 19249–19256

    CAS  PubMed  Google Scholar 

  • Simonin F, Poch O, Delarue M, de Murcia G (1993a) Identification of the potential active-site residues in the human poly(ADP-ribose) polymerase. J Biol Chem 268: 8529–8535

    CAS  PubMed  Google Scholar 

  • Simonin F, Höfferer L, Panzeter PL, Muller S, de Murcia G, Althaus FR (1993b) The carboxyl-terminal domain of human poly(ADP-ribose) polymerase: overproduction in Escherichia coli, large scale purification and characterization. J Biol Chem 268: 13454–13461

    CAS  PubMed  Google Scholar 

  • Smulson M, Kang V, Ntambi JM, Rosenthal D, Ding R, Simbulan C (1995) Requirement for the expression of poly ADP-ribose polymerase during the early stages of differentiation of 3T3-L1 preadipocytes as studied by antisense RNA induction. J Biol Chem 270: 119–127

    Article  CAS  PubMed  Google Scholar 

  • Stevnsner T, Ding R, Smulson M, Bohr VA (1994) Inhibition of gene-specific repair of alkylation damage in cells depleted of poly(ADP-ribose) polymerase. Nucleic Acids Res 22: 4620–4624

    Article  CAS  PubMed  Google Scholar 

  • Tewari M, Quan LT, O’Rourke K, Desnoyers S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS, Dixit VM (1995) Yama/CPP32β, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81: 801–809

    Article  CAS  PubMed  Google Scholar 

  • Thompson LH, Brookman KW, Jones NJ, Allen SA, Carrano AV (1990) Molecular cloning of the human XRCC1 gene, which corrects defective DNA strand break repair and sister chromatid exchange. Mol Cell Biol 10: 6160–6171

    CAS  PubMed  Google Scholar 

  • Trucco C, Flatter E, Fribourg S, de Murcia G, Ménissier-de Murcia J (1996) Mutations in the DNA binding domain of the human poly (ADP-ribose) polymerase that affect its catalytic activity but not its DNA binding capacity. FEBS Lett 399: 313–316

    Article  CAS  PubMed  Google Scholar 

  • Trucco C, Oliver FJ, de Murcia G, Menissier-de Murcia J (1998) DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines. Nucleic Acids Res 26: 2644–2649

    Article  CAS  PubMed  Google Scholar 

  • Uchida K, Kanai S, Ishikawa K-I, Ozawa Y-I, Uchida M, Sugimura T, Miwa M (1993) Cloning of cDNA encoding Drosophila poly(ADP-ribose) polymerase: leucine zipper in the automodification domain. Proc Natl Acad Sci USA 90: 3481–3485

    Article  CAS  PubMed  Google Scholar 

  • Walter CA, Trolian D, McFarland M, Street K, Gurram G, McCarrey J (1996) XRCC-1 expression during male meiosis in the mouse. Biol Reprod 55: 630–635

    Article  CAS  PubMed  Google Scholar 

  • Wang ZQ, Auer B, Stingl L, Berghammer H, Haidacher D, Schweiger M, Wagner EW (1995) Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev 9: 509–520

    Article  CAS  PubMed  Google Scholar 

  • Wang ZQ, Stingl L, Morrison C, Jantsch M, Los M, Schulze-Osthoff K, Wagner EW (1997) PARP is important for genomic stability but dispensable in apoptosis. Genes Dev 11: 2347–2358

    Article  CAS  PubMed  Google Scholar 

  • Wei YF, Robins P, Carter K, Caldecott K, Pappin DJC, Yu GL, Wang RP, Shell BK, Nash RA, Schär P, Barnes DE, Haseltine WA, Lindahl T (1995) Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination. Mol Cell Biol 15: 3206–3216

    CAS  PubMed  Google Scholar 

  • Witmer M, Aboul-Ela N, Jacobson M, Stamato T (1994) Increased sensitivity to DNA-alkylating agents in CHO mutants with decreased poly (ADP-ribose) polymerase activity. Mutat Res 314: 249–260

    CAS  PubMed  Google Scholar 

  • Yoshihara K, Itaya A, Hironaka T, Sakuramoto S, Tanaka Y, Tsuyuki M, Inada Y, Kamiya T, Ohnishi K, Honma M, Kataoka E, Mizusawa H, Uchida M, Uchida K, Miwa M (1992) Poly ADP-ribose polymerase-defective mutant cell clone of mouse L1210 cells. Exp Cell Res 200: 126–134

    Article  CAS  PubMed  Google Scholar 

  • Zahradka P, Ebisuzaki K (1982) A shuttle mechanism for DNA-protein interactions. The regulation of poly(ADP-ribose) polymerase. Eur J Biochem 127: 579–585

    Article  CAS  PubMed  Google Scholar 

  • Zdzienicka MZ, van der Schans GP, Natarajan AT, Thompson LH, Neueteboom I, Simons JWIM (1992) A Chinese hamster ovary cell mutant (EM-C11) with sensitivity to simple alkylating agents and a very high level of sister chromatid exchanges. Mutagenesis 7: 265–269

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Dawson VL, Dawson TM, Snyder SH (1994) Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263: 687–689

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De Murcia, G. et al. (1998). Poly(ADP-Ribose) Polymerase Is Required for Maintenance of Genomic Integrity During Base Excision Repair. In: Eckstein, F., Lilley, D.M.J. (eds) DNA Repair. Nucleic Acids and Molecular Biology, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48770-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48770-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48772-9

  • Online ISBN: 978-3-642-48770-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics