Skip to main content

Neurotrophins and the Regulation of Energy Balance and Body Weight

  • Chapter
  • First Online:
Neurotrophic Factors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 220))

Abstract

Complex interactions between the brain and peripheral tissues mediate the effective control of energy balance and body weight. Hypothalamic and hindbrain neural circuits integrate peripheral signals informing the nutritional status of the animal and in response regulate nutrient intake and energy utilization. Obesity and its many medical complications emerge from the dysregulation of energy homeostasis. Excessive weight gain might also arise from alterations in reward systems of the brain that drive consumption of calorie dense, palatable foods in the absence of an energy requirement. Several neurotrophins, most notably brain-derived neurotrophic factor, have been implicated in the molecular and cellular processes underlying body weight regulation. Here, we review investigations interrogating their roles in energy balance and reward centers of the brain impacting feeding behavior and energy expenditure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akkermann K, Hiio K, Villa I, Harro J (2011) Food restriction leads to binge eating dependent upon the effect of the brain-derived neurotrophic factor Val66Met polymorphism. Psychiatry Res 185:39–43

    PubMed  CAS  Google Scholar 

  • Amador-Arjona A, Delgado-Morales R, Belda X, Gagliano H, Gallego X, Keck ME, Armario A, Dierssen M (2010) Susceptibility to stress in transgenic mice overexpressing TrkC, a model of panic disorder. J Psychiatr Res 44:157–167

    PubMed  Google Scholar 

  • Anand BK, Brobeck JR (1951) Localization of a “feeding center” in the hypothalamus of the rat. Proc Soc Exp Biol Med 77:323–324

    PubMed  CAS  Google Scholar 

  • Antoni FA, Palkovits M, Makara GB, Linton EA, Lowry PJ, Kiss JZ (1983) Immunoreactive corticotropin-releasing hormone in the hypothalamoinfundibular tract. Neuroendocrinology 36:415–423

    PubMed  CAS  Google Scholar 

  • Aoi M, Date I, Tomita S, Ohmoto T (2000) Single or continuous injection of glial cell line-derived neurotrophic factor in the striatum induces recovery of the nigrostriatal dopaminergic system. Neurol Res 22:832–836

    PubMed  CAS  Google Scholar 

  • Baldo BA, Gual-Bonilla L, Sijapati K, Daniel RA, Landry CF, Kelley AE (2004) Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABAA receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment. Eur J Neurosci 19:376–386

    PubMed  Google Scholar 

  • Baquet ZC, Bickford PC, Jones KR (2005) Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci 25:6251–6259

    PubMed  CAS  Google Scholar 

  • Bariohay B, Lebrun B, Moyse E, Jean A (2005) Brain-derived neurotrophic factor plays a role as an anorexigenic factor in the dorsal vagal complex. Endocrinology 146:5612–5620

    PubMed  CAS  Google Scholar 

  • Bariohay B, Roux J, Tardivel C, Trouslard J, Jean A, Lebrun B (2009) Brain-derived neurotrophic factor/tropomyosin-related kinase receptor type B signaling is a downstream effector of the brainstem melanocortin system in food intake control. Endocrinology 150:2646–2653

    PubMed  CAS  Google Scholar 

  • Bassareo V, Di Chiara G (1997) Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum. J Neurosci 17:851–861

    PubMed  CAS  Google Scholar 

  • Bassareo V, Di Chiara G (1999) Modulation of feeding-induced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state. Eur J Neurosci 11:4389–4397

    PubMed  CAS  Google Scholar 

  • Bassareo V, De Luca MA, Di Chiara G (2002) Differential expression of motivational stimulus properties by dopamine in nucleus accumbens shell versus core and prefrontal cortex. J Neurosci 22:4709–4719

    PubMed  CAS  Google Scholar 

  • Bates B, Rios M, Trumpp A, Chen C, Fan G, Bishop JM, Jaenisch R (1999) Neurotrophin-3 is required for proper cerebellar development. Nat Neurosci 2:115–117

    PubMed  CAS  Google Scholar 

  • Beckers S, Peeters A, Zegers D, Mertens I, Van Gaal L, Van Hul W (2008) Association of the BDNF Val66Met variation with obesity in women. Mol Genet Metab 95:110–112

    PubMed  CAS  Google Scholar 

  • Berridge KC (2009) ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol Behav 97:537–550

    PubMed Central  PubMed  CAS  Google Scholar 

  • Berthoud HR (2004) Neural control of appetite: cross-talk between homeostatic and non-homeostatic systems. Appetite 43:315–317

    PubMed  Google Scholar 

  • Bina KG, Cincotta AH (2000) Dopaminergic agonists normalize elevated hypothalamic neuropeptide Y and corticotropin-releasing hormone, body weight gain, and hyperglycemia in ob/ob mice. Neuroendocrinology 71:68–78

    PubMed  CAS  Google Scholar 

  • Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon JL, Vale W, Sawchenko PE (1992) The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol 319:218–245

    PubMed  CAS  Google Scholar 

  • Blum K, Braverman ER, Holder JM, Lubar JF, Monastra VJ, Miller D, Lubar JO, Chen TJ, Comings DE (2000) Reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J Psychoactive Drugs 32 Suppl:i–iv, 1–112

    PubMed  CAS  Google Scholar 

  • Byerly MS, Fox EA (2006) High-fat hyperphagia in neurotrophin-4 deficient mice reveals potential role of vagal intestinal sensory innervation in long-term controls of food intake. Neurosci Lett 400:240–245

    PubMed  CAS  Google Scholar 

  • Canteras NS, Simerly RB, Swanson LW (1994) Organization of projections from the ventromedial nucleus of the hypothalamus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J Comp Neurol 348:41–79

    PubMed  CAS  Google Scholar 

  • Cao L, Choi EY, Liu X, Martin A, Wang C, Xu X, During MJ (2011) White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab 14:324–338

    PubMed Central  PubMed  CAS  Google Scholar 

  • Carter AR, Chen C, Schwartz PM, Segal RA (2002) Brain-derived neurotrophic factor modulates cerebellar plasticity and synaptic ultrastructure. J Neurosci 22:1316–1327

    PubMed  CAS  Google Scholar 

  • Chen ZY, Jing D, Bath KG, Ieraci A, Khan T, Siao CJ, Herrera DG, Toth M, Yang C, McEwen BS, Hempstead BL, Lee FS (2006) Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 314:140–143

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chi MM, Powley TL (2007) NT-4-deficient mice lack sensitivity to meal-associated preabsorptive feedback from lipids. Am J Physiol Regul Integr Comp Physiol 292:R2124–R2135

    PubMed  CAS  Google Scholar 

  • Cone RD, Cowley MA, Butler AA, Fan W, Marks DL, Low MJ (2001) The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J Obes Relat Metab Disord 25(Suppl 5):S63–S67

    PubMed  CAS  Google Scholar 

  • Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 17:2295–2313

    PubMed  CAS  Google Scholar 

  • Coppola V, Tessarollo L (2004) Control of hyperphagia prevents obesity in BDNF heterozygous mice. Neuroreport 15:2665–2668

    PubMed  Google Scholar 

  • Cordeira JW, Frank L, Sena-Esteves M, Pothos EN, Rios M (2010) Brain-derived neurotrophic factor regulates hedonic feeding by acting on the mesolimbic dopamine system. J Neurosci 30:2533–2541

    PubMed Central  PubMed  CAS  Google Scholar 

  • Date Y, Ueta Y, Yamashita H, Yamaguchi H, Matsukura S, Kangawa K, Sakurai T, Yanagisawa M, Nakazato M (1999) Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci U S A 96:748–753

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dierssen M, Gratacos M, Sahun I, Martin M, Gallego X, Amador-Arjona A, Martinez de Lagran M, Murtra P, Marti E, Pujana MA, Ferrer I, Dalfo E, Martinez-Cue C, Florez J, Torres-Peraza JF, Alberch J, Maldonado R, Fillat C, Estivill X (2006) Transgenic mice overexpressing the full-length neurotrophin receptor TrkC exhibit increased catecholaminergic neuron density in specific brain areas and increased anxiety-like behavior and panic reaction. Neurobiol Dis 24:403–418

    PubMed  CAS  Google Scholar 

  • Dietrich MO, Horvath TL (2009) Feeding signals and brain circuitry. Eur J Neurosci 30:1688–1696

    PubMed  Google Scholar 

  • Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387:90–94

    PubMed  CAS  Google Scholar 

  • Fan G, Egles C, Sun Y, Minichiello L, Renger JJ, Klein R, Liu G, Jaenisch R (2000) Knocking the NT4 gene into the BDNF locus rescues BDNF deficient mice and reveals distinct NT4 and BDNF activities. Nat Neurosci 3:350–357

    PubMed  CAS  Google Scholar 

  • Fan W, Ellacott KL, Halatchev IG, Takahashi K, Yu P, Cone RD (2004) Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nat Neurosci 7:335–336

    PubMed  CAS  Google Scholar 

  • Faris PL, Kim SW, Meller WH, Goodale RL, Oakman SA, Hofbauer RD, Marshall AM, Daughters RS, Banerjee-Stevens D, Eckert ED, Hartman BK (2000) Effect of decreasing afferent vagal activity with ondansetron on symptoms of bulimia nervosa: a randomised, double-blind trial. Lancet 355:792–797

    PubMed  CAS  Google Scholar 

  • Farooqi IS, Yeo GS, Keogh JM, Aminian S, Jebb SA, Butler G, Cheetham T, O’Rahilly S (2000) Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest 106:271–279

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fox EA, Byerly MS (2004) A mechanism underlying mature-onset obesity: evidence from the hyperphagic phenotype of brain-derived neurotrophic factor mutants. Am J Physiol Regul Integr Comp Physiol 286:R994–R1004

    PubMed  CAS  Google Scholar 

  • Fox EA, Phillips RJ, Baronowsky EA, Byerly MS, Jones S, Powley TL (2001) Neurotrophin-4 deficient mice have a loss of vagal intraganglionic mechanoreceptors from the small intestine and a disruption of short-term satiety. J Neurosci 21:8602–8615

    PubMed  CAS  Google Scholar 

  • Freeman AY, Soghomonian JJ, Pierce RC (2003) Tyrosine kinase B and C receptors in the neostriatum and nucleus accumbens are co-localized in enkephalin-positive and enkephalin-negative neuronal profiles and their expression is influenced by cocaine. Neuroscience 117:147–156

    PubMed  CAS  Google Scholar 

  • Fulton S, Pissios P, Manchon RP, Stiles L, Frank L, Pothos EN, Maratos-Flier E, Flier JS (2006) Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51:811–822

    PubMed  CAS  Google Scholar 

  • Garcia-Suarez O, Gonzalez-Martinez T, Perez-Perez M, Germana A, Blanco-Gelaz MA, Monjil DF, Ciriaco E, Silos-Santiago I, Vega JA (2006) Expression of the neurotrophin receptor TrkB in the mouse liver. Anat Embryol (Berl) 211:465–473

    CAS  Google Scholar 

  • Ghiglieri O, Gambarana C, Scheggi S, Tagliamonte A, Willner P, De Montis MG (1997) Palatable food induces an appetitive behaviour in satiated rats which can be inhibited by chronic stress. Behav Pharmacol 8:619–628

    PubMed  CAS  Google Scholar 

  • Gloaguen I, Costa P, Demartis A, Lazzaro D, Di Marco A, Graziani R, Paonessa G, Chen F, Rosenblum CI, Van der Ploeg LH, Cortese R, Ciliberto G, Laufer R (1997) Ciliary neurotrophic factor corrects obesity and diabetes associated with leptin deficiency and resistance. Proc Natl Acad Sci U S A 94:6456–6461

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gray J, Yeo GS, Cox JJ, Morton J, Adlam AL, Keogh JM, Yanovski JA, El Gharbawy A, Han JC, Tung YC, Hodges JR, Raymond FL, O’Rahilly S, Farooqi IS (2006) Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes 55:3366–3371

    PubMed Central  PubMed  CAS  Google Scholar 

  • Grill HJ, Schwartz MW, Kaplan JM, Foxhall JS, Breininger J, Baskin DG (2002) Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology 143:239–246

    PubMed  CAS  Google Scholar 

  • Hakansson ML, Brown H, Ghilardi N, Skoda RC, Meister B (1998) Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. J Neurosci 18:559–572

    PubMed  CAS  Google Scholar 

  • Han JC, Liu QR, Jones M, Levinn RL, Menzie CM, Jefferson-George KS, Adler-Wailes DC, Sanford EL, Lacbawan FL, Uhl GR, Rennert OM, Yanovski JA (2008) Brain-derived neurotrophic factor and obesity in the WAGR syndrome. N Engl J Med 359:918–927

    PubMed Central  PubMed  CAS  Google Scholar 

  • Harrold JA, Dovey T, Cai XJ, Halford JC, Pinkney J (2008) Autoradiographic analysis of ghrelin receptors in the rat hypothalamus. Brain Res 1196:59–64

    PubMed  CAS  Google Scholar 

  • Herman CP, Polivy J (1990) From dietary restraint to binge eating: attaching causes to effects. Appetite 14:123–125, discussion 142–123

    PubMed  CAS  Google Scholar 

  • Hernandez L, Hoebel BG (1988) Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sci 42:1705–1712

    PubMed  CAS  Google Scholar 

  • Hoane MR, Gulwadi AG, Morrison S, Hovanesian G, Lindner MD, Tao W (1999) Differential in vivo effects of neurturin and glial cell-line-derived neurotrophic factor. Exp Neurol 160:235–243

    PubMed  CAS  Google Scholar 

  • Hock C, Heese K, Muller-Spahn F, Huber P, Riesen W, Nitsch RM, Otten U (2000) Increased cerebrospinal fluid levels of neurotrophin 3 (NT-3) in elderly patients with major depression. Mol Psychiatry 5:510–513

    PubMed  CAS  Google Scholar 

  • Hudson J, Granholm AC, Gerhardt GA, Henry MA, Hoffman A, Biddle P, Leela NS, Mackerlova L, Lile JD, Collins F et al (1995) Glial cell line-derived neurotrophic factor augments midbrain dopaminergic circuits in vivo. Brain Res Bull 36:425–432

    PubMed  CAS  Google Scholar 

  • Ip NY, Yancopoulos GD (1996) The neurotrophins and CNTF: two families of collaborative neurotrophic factors. Annu Rev Neurosci 19:491–515

    PubMed  CAS  Google Scholar 

  • Kernie SG, Liebl DJ, Parada LF (2000) BDNF regulates eating behavior and locomotor activity in mice. EMBO J 19:1290–1300

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kokoeva MV, Yin H, Flier JS (2005) Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310:679–683

    PubMed  CAS  Google Scholar 

  • Komori T, Morikawa Y, Nanjo K, Senba E (2006) Induction of brain-derived neurotrophic factor by leptin in the ventromedial hypothalamus. Neuroscience 139:1107–1115

    PubMed  CAS  Google Scholar 

  • Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T (1995) Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci U S A 92:8856–8860

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kramer ER, Aron L, Ramakers GM, Seitz S, Zhuang X, Beyer K, Smidt MP, Klein R (2007) Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol 5:e39

    PubMed Central  PubMed  Google Scholar 

  • Kublaoui BM, Gemelli T, Tolson KP, Wang Y, Zinn AR (2008) Oxytocin deficiency mediates hyperphagic obesity of Sim1 haploinsufficient mice. Mol Endocrinol 22:1723–1734

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kuroda A, Yamasaki Y, Matsuhisa M, Kubota M, Nakahara I, Nakatani Y, Hoshi A, Gorogawa S, Umayahara Y, Itakura Y, Nakagawa T, Taiji M, Kajimoto Y, Hori M (2003) Brain-derived neurotrophic factor ameliorates hepatic insulin resistance in Zucker fatty rats. Metabolism 52:203–208

    PubMed  CAS  Google Scholar 

  • Kusano K, House SB, Gainer H (1999) Effects of osmotic pressure and brain-derived neurotrophic factor on the survival of postnatal hypothalamic oxytocinergic and vasopressinergic neurons in dissociated cell culture. J Neuroendocrinol 11:145–152

    PubMed  CAS  Google Scholar 

  • Lapchak PA, Hefti F (1992) BDNF and NGF treatment in lesioned rats: effects on cholinergic function and weight gain. Neuroreport 3:405–408

    PubMed  CAS  Google Scholar 

  • Lapchak PA, Araujo DM, Hilt DC, Sheng J, Jiao S (1997) Adenoviral vector-mediated GDNF gene therapy in a rodent lesion model of late stage Parkinson’s disease. Brain Res 777:153–160

    PubMed  CAS  Google Scholar 

  • Ledoux S, Choquet M, Manfredi R (1993) Associated factors for self-reported binge eating among male and female adolescents. J Adolesc 16:75–91

    PubMed  CAS  Google Scholar 

  • Leinninger GM, Jo YH, Leshan RL, Louis GW, Yang H, Barrera JG, Wilson H, Opland DM, Faouzi MA, Gong Y, Jones JC, Rhodes CJ, Chua S Jr, Diano S, Horvath TL, Seeley RJ, Becker JB, Munzberg H, Myers MG Jr (2009) Leptin acts via leptin receptor-expressing lateral hypothalamic neurons to modulate the mesolimbic dopamine system and suppress feeding. Cell Metab 10:89–98

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lommatzsch M, Braun A, Mannsfeldt A, Botchkarev VA, Botchkareva NV, Paus R, Fischer A, Lewin GR, Renz H (1999) Abundant production of brain-derived neurotrophic factor by adult visceral epithelia. Implications for paracrine and target-derived neurotrophic functions. Am J Pathol 155:1183–1193

    PubMed Central  PubMed  CAS  Google Scholar 

  • Luiten PG, Room P (1980) Interrelations between lateral, dorsomedial and ventromedial hypothalamic nuclei in the rat. An HRP study. Brain Res 190:321–332

    PubMed  CAS  Google Scholar 

  • Lyons WE, Mamounas LA, Ricaurte GA, Coppola V, Reid SW, Bora SH, Wihler C, Koliatsos VE, Tessarollo L (1999) Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci U S A 96:15239–15244

    PubMed Central  PubMed  CAS  Google Scholar 

  • MacLennan AJ, Vinson EN, Marks L, McLaurin DL, Pfeifer M, Lee N (1996) Immunohistochemical localization of ciliary neurotrophic factor receptor alpha expression in the rat nervous system. J Neurosci 16:621–630

    PubMed  CAS  Google Scholar 

  • Manfredsson FP, Tumer N, Erdos B, Landa T, Broxson CS, Sullivan LF, Rising AC, Foust KD, Zhang Y, Muzyczka N, Gorbatyuk OS, Scarpace PJ, Mandel RJ (2009) Nigrostriatal rAAV-mediated GDNF overexpression induces robust weight loss in a rat model of age-related obesity. Mol Ther 17:980–991

    PubMed Central  PubMed  CAS  Google Scholar 

  • Martin-Iverson MT, Todd KG, Altar CA (1994) Brain-derived neurotrophic factor and neurotrophin-3 activate striatal dopamine and serotonin metabolism and related behaviors: interactions with amphetamine. J Neurosci 14:1262–1270

    PubMed  CAS  Google Scholar 

  • Matson CA, Wiater MF, Kuijper JL, Weigle DS (1997) Synergy between leptin and cholecystokinin (CCK) to control daily caloric intake. Peptides 18:1275–1278

    PubMed  CAS  Google Scholar 

  • McAllister AK, Katz LC, Lo DC (1997) Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 18:767–778

    PubMed  CAS  Google Scholar 

  • Mercader JM, Saus E, Aguera Z, Bayes M, Boni C, Carreras A, Cellini E, de Cid R, Dierssen M, Escaramis G, Fernandez-Aranda F, Forcano L, Gallego X, Gonzalez JR, Gorwood P, Hebebrand J, Hinney A, Nacmias B, Puig A, Ribases M, Ricca V, Romo L, Sorbi S, Versini A, Gratacos M, Estivill X (2008) Association of NTRK3 and its interaction with NGF suggest an altered cross-regulation of the neurotrophin signaling pathway in eating disorders. Hum Mol Genet 17:1234–1244

    PubMed  CAS  Google Scholar 

  • Monteleone P, Zanardini R, Tortorella A, Gennarelli M, Castaldo E, Canestrelli B, Maj M (2006) The 196G/A (val66met) polymorphism of the BDNF gene is significantly associated with binge eating behavior in women with bulimia nervosa or binge eating disorder. Neurosci Lett 406:133–137

    PubMed  CAS  Google Scholar 

  • Moreno G, Piermaria J, Gaillard RC, Spinedi E (2011) In vitro functionality of isolated embryonic hypothalamic vasopressinergic and oxytocinergic neurons: modulatory effects of brain-derived neurotrophic factor and angiotensin II. Endocrine 39:83–88

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Tsuchida A, Itakura Y, Nonomura T, Ono M, Hirota F, Inoue T, Nakayama C, Taiji M, Noguchi H (2000) Brain-derived neurotrophic factor regulates glucose metabolism by modulating energy balance in diabetic mice. Diabetes 49:436–444

    PubMed  CAS  Google Scholar 

  • Nicholson JR, Peter JC, Lecourt AC, Barde YA, Hofbauer KG (2007) Melanocortin-4 receptor activation stimulates hypothalamic brain-derived neurotrophic factor release to regulate food intake, body temperature and cardiovascular function. J Neuroendocrinol 19:974–982

    PubMed  CAS  Google Scholar 

  • Nonomura T, Tsuchida A, Ono-Kishino M, Nakagawa T, Taiji M, Noguchi H (2001) Brain-derived neurotrophic factor regulates energy expenditure through the central nervous system in obese diabetic mice. Int J Exp Diabetes Res 2:201–209

    PubMed Central  PubMed  CAS  Google Scholar 

  • Numan S, Seroogy KB (1999) Expression of trkB and trkC mRNAs by adult midbrain dopamine neurons: a double-label in situ hybridization study. J Comp Neurol 403:295–308

    PubMed  CAS  Google Scholar 

  • Numan S, Lane-Ladd SB, Zhang L, Lundgren KH, Russell DS, Seroogy KB, Nestler EJ (1998) Differential regulation of neurotrophin and trk receptor mRNAs in catecholaminergic nuclei during chronic opiate treatment and withdrawal. J Neurosci 18:10700–10708

    PubMed  CAS  Google Scholar 

  • Okazawa H, Murata M, Watanabe M, Kamei M, Kanazawa I (1992) Dopaminergic stimulation up-regulates the in vivo expression of brain-derived neurotrophic factor (BDNF) in the striatum. FEBS Lett 313:138–142

    PubMed  CAS  Google Scholar 

  • Pan Y, Chau L, Liu S, Avshalumov MV, Rice ME, Carr KD (2011) A food restriction protocol that increases drug reward decreases tropomyosin receptor kinase B in the ventral tegmental area, with no effect on brain-derived neurotrophic factor or tropomyosin receptor kinase B protein levels in dopaminergic forebrain regions. Neuroscience 197:330–338

    PubMed Central  PubMed  CAS  Google Scholar 

  • Patapoutian A, Reichardt LF (2001) Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 11:272–280

    PubMed  CAS  Google Scholar 

  • Pelleymounter MA, Cullen MJ, Wellman CL (1995) Characteristics of BDNF-induced weight loss. Exp Neurol 131:229–238

    PubMed  CAS  Google Scholar 

  • Penicaud L, Larue-Achagiotis C, Le Magnen J (1983) Endocrine basis for weight gain after fasting or VMH lesion in rats. Am J Physiol 245:E246–E252

    PubMed  CAS  Google Scholar 

  • Pinto S, Roseberry AG, Liu H, Diano S, Shanabrough M, Cai X, Friedman JM, Horvath TL (2004) Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304:110–115

    PubMed  CAS  Google Scholar 

  • Pissios P, Frank L, Kennedy AR, Porter DR, Marino FE, Liu FF, Pothos EN, Maratos-Flier E (2008) Dysregulation of the mesolimbic dopamine system and reward in MCH-/- mice. Biol Psychiatry 64(3):184–191

    PubMed  CAS  Google Scholar 

  • Pothos EN, Creese I, Hoebel BG (1995a) Restricted eating with weight loss selectively decreases extracellular dopamine in the nucleus accumbens and alters dopamine response to amphetamine, morphine, and food intake. J Neurosci 15:6640–6650

    PubMed  CAS  Google Scholar 

  • Pothos EN, Hernandez L, Hoebel BG (1995b) Chronic food deprivation decreases extracellular dopamine in the nucleus accumbens: implications for a possible neurochemical link between weight loss and drug abuse. Obes Res 3(Suppl 4):525S–529S

    PubMed  Google Scholar 

  • Pu L, Liu QS, Poo MM (2006) BDNF-dependent synaptic sensitization in midbrain dopamine neurons after cocaine withdrawal. Nat Neurosci 9:605–607

    PubMed  CAS  Google Scholar 

  • Rada P, Avena NM, Hoebel BG (2005) Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience 134:737–744

    PubMed  CAS  Google Scholar 

  • Rauggi R, Scheggi S, Cassanelli A, De Montis MG, Tagliamonte A, Gambarana C (2005) The mesolimbic dopaminergic response to novel palatable food consumption increases dopamine-D1 receptor-mediated signalling with complex modifications of the DARPP-32 phosphorylation pattern. J Neurochem 92:867–877

    PubMed  CAS  Google Scholar 

  • Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361:1545–1564

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rios M, Fan G, Fekete C, Kelly J, Bates B, Kuehn R, Lechan RM, Jaenisch R (2001) Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol 15:1748–1757

    PubMed  CAS  Google Scholar 

  • Saper CB, Swanson LW, Cowan WM (1979) An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat. J Comp Neurol 183:689–706

    PubMed  CAS  Google Scholar 

  • Schwartz GJ (2000) The role of gastrointestinal vagal afferents in the control of food intake: current prospects. Nutrition 16:866–873

    PubMed  CAS  Google Scholar 

  • Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG (1996) Identification of targets of leptin action in rat hypothalamus. J Clin Invest 98:1101–1106

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schwartz MW, Seeley RJ, Woods SC, Weigle DS, Campfield LA, Burn P, Baskin DG (1997) Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 46:2119–2123

    PubMed  CAS  Google Scholar 

  • Sears RM, Liu RJ, Narayanan NS, Sharf R, Yeckel MF, Laubach M, Aghajanian GK, DiLeone RJ (2010) Regulation of nucleus accumbens activity by the hypothalamic neuropeptide melanin-concentrating hormone. J Neurosci 30:8263–8273

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shimizu E, Hashimoto K, Iyo M (2004) Ethnic difference of the BDNF 196G/A (val66met) polymorphism frequencies: the possibility to explain ethnic mental traits. Am J Med Genet B Neuropsychiatr Genet 126:122–123

    Google Scholar 

  • Simpson KA, Martin NM, Bloom SR (2009) Hypothalamic regulation of food intake and clinical therapeutic applications. Arq Bras Endocrinol Metabol 53:120–128

    PubMed  Google Scholar 

  • Skledar M, Nikolac M, Dodig-Curkovic K, Curkovic M, Borovecki F, Pivac N (2012) Association between brain-derived neurotrophic factor Val66Met and obesity in children and adolescents. Prog Neuropsychopharmacol Biol Psychiatry 36(1):136–140

    PubMed  CAS  Google Scholar 

  • Sleeman MW, Garcia K, Liu R, Murray JD, Malinova L, Moncrieffe M, Yancopoulos GD, Wiegand SJ (2003) Ciliary neurotrophic factor improves diabetic parameters and hepatic steatosis and increases basal metabolic rate in db/db mice. Proc Natl Acad Sci U S A 100:14297–14302

    PubMed Central  PubMed  CAS  Google Scholar 

  • Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, Allen HL, Lindgren CM, Luan J, Magi R, Randall JC, Vedantam S, Winkler TW, Qi L, Workalemahu T, Heid IM, Steinthorsdottir V, Stringham HM, Weedon MN, Wheeler E, Wood AR, Ferreira T, Weyant RJ, Segre AV, Estrada K, Liang L, Nemesh J, Park JH, Gustafsson S, Kilpelainen TO, Yang J, Bouatia-Naji N, Esko T, Feitosa MF, Kutalik Z, Mangino M, Raychaudhuri S, Scherag A, Smith AV, Welch R, Zhao JH, Aben KK, Absher DM, Amin N, Dixon AL, Fisher E, Glazer NL, Goddard ME, Heard-Costa NL, Hoesel V, Hottenga JJ, Johansson A, Johnson T, Ketkar S, Lamina C, Li S, Moffatt MF, Myers RH, Narisu N, Perry JR, Peters MJ, Preuss M, Ripatti S, Rivadeneira F, Sandholt C, Scott LJ, Timpson NJ, Tyrer JP, van Wingerden S, Watanabe RM, White CC, Wiklund F, Barlassina C, Chasman DI, Cooper MN, Jansson JO, Lawrence RW, Pellikka N, Prokopenko I, Shi J, Thiering E, Alavere H, Alibrandi MT, Almgren P, Arnold AM, Aspelund T, Atwood LD, Balkau B, Balmforth AJ, Bennett AJ, Ben-Shlomo Y, Bergman RN, Bergmann S, Biebermann H, Blakemore AI, Boes T, Bonnycastle LL, Bornstein SR, Brown MJ, Buchanan TA et al (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42(11):937–948

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sternson SM, Shepherd GM, Friedman JM (2005) Topographic mapping of VMH → arcuate nucleus microcircuits and their reorganization by fasting. Nat Neurosci 8:1356–1363

    PubMed  CAS  Google Scholar 

  • Stice E, Spoor S, Bohon C, Veldhuizen MG, Small DM (2008) Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J Abnorm Psychol 117:924–935

    PubMed Central  PubMed  Google Scholar 

  • Sugiyama N, Kanba S, Arita J (2003) Temporal changes in the expression of brain-derived neurotrophic factor mRNA in the ventromedial nucleus of the hypothalamus of the developing rat brain. Brain Res Mol Brain Res 115:69–77

    PubMed  CAS  Google Scholar 

  • Teegarden SL, Nestler EJ, Bale TL (2008) Delta FosB-mediated alterations in dopamine signaling are normalized by a palatable high-fat diet. Biol Psychiatry 64:941–950

    PubMed Central  PubMed  CAS  Google Scholar 

  • Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A, Styrkarsdottir U, Gretarsdottir S, Thorlacius S, Jonsdottir I, Jonsdottir T, Olafsdottir EJ, Olafsdottir GH, Jonsson T, Jonsson F, Borch-Johnsen K, Hansen T, Andersen G, Jorgensen T, Lauritzen T, Aben KK, Verbeek AL, Roeleveld N, Kampman E, Yanek LR, Becker LC, Tryggvadottir L, Rafnar T, Becker DM, Gulcher J, Kiemeney LA, Pedersen O, Kong A, Thorsteinsdottir U, Stefansson K (2009) Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet 41:18–24

    PubMed  CAS  Google Scholar 

  • Toni R, Lechan RM (1993) Neuroendocrine regulation of thyrotropin-releasing hormone (TRH) in the tuberoinfundibular system. J Endocrinol Invest 16:715–753

    PubMed  CAS  Google Scholar 

  • Tonra JR, Ono M, Liu X, Garcia K, Jackson C, Yancopoulos GD, Wiegand SJ, Wong V (1999) Brain-derived neurotrophic factor improves blood glucose control and alleviates fasting hyperglycemia in C57BLKS-Lepr(db)/lepr(db) mice. Diabetes 48:588–594

    PubMed  CAS  Google Scholar 

  • Toriya M, Maekawa F, Maejima Y, Onaka T, Fujiwara K, Nakagawa T, Nakata M, Yada T (2010) Long-term infusion of brain-derived neurotrophic factor reduces food intake and body weight via a corticotrophin-releasing hormone pathway in the paraventricular nucleus of the hypothalamus. J Neuroendocrinol 22:987–995

    PubMed  CAS  Google Scholar 

  • Tran PV, Lee MB, Marin O, Xu B, Jones KR, Reichardt LF, Rubenstein JR, Ingraham HA (2003) Requirement of the orphan nuclear receptor SF-1 in terminal differentiation of ventromedial hypothalamic neurons. Mol Cell Neurosci 22:441–453

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tran PV, Akana SF, Malkovska I, Dallman MF, Parada LF, Ingraham HA (2006) Diminished hypothalamic bdnf expression and impaired VMH function are associated with reduced SF-1 gene dosage. J Comp Neurol 498:637–648

    PubMed  CAS  Google Scholar 

  • Tsao D, Thomsen HK, Chou J, Stratton J, Hagen M, Loo C, Garcia C, Sloane DL, Rosenthal A, Lin JC (2008) TrkB agonists ameliorate obesity and associated metabolic conditions in mice. Endocrinology 149:1038–1048

    PubMed  CAS  Google Scholar 

  • Tsuchida A, Nonomura T, Ono-Kishino M, Nakagawa T, Taiji M, Noguchi H (2001) Acute effects of brain-derived neurotrophic factor on energy expenditure in obese diabetic mice. Int J Obes Relat Metab Disord 25:1286–1293

    PubMed  CAS  Google Scholar 

  • Tsuchida A, Nonomura T, Nakagawa T, Itakura Y, Ono-Kishino M, Yamanaka M, Sugaru E, Taiji M, Noguchi H (2002) Brain-derived neurotrophic factor ameliorates lipid metabolism in diabetic mice. Diabetes Obes Metab 4:262–269

    PubMed  CAS  Google Scholar 

  • Tumer N, Scarpace PJ, Dogan MD, Broxson CS, Matheny M, Yurek DM, Peden CS, Burger C, Muzyczka N, Mandel RJ (2006) Hypothalamic rAAV-mediated GDNF gene delivery ameliorates age-related obesity. Neurobiol Aging 27:459–470

    PubMed  Google Scholar 

  • Unger TJ, Calderon GA, Bradley LC, Sena-Esteves M, Rios M (2007) Selective deletion of Bdnf in the ventromedial and dorsomedial hypothalamus of adult mice results in hyperphagic behavior and obesity. J Neurosci 27:14265–14274

    PubMed  CAS  Google Scholar 

  • Vaisse C, Clement K, Durand E, Hercberg S, Guy-Grand B, Froguel P (2000) Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest 106:253–262

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang C, Bomberg E, Billington C, Levine A, Kotz CM (2007a) Brain-derived neurotrophic factor in the hypothalamic paraventricular nucleus increases energy expenditure by elevating metabolic rate. Am J Physiol Regul Integr Comp Physiol 293(3):R992–R1002

    PubMed  CAS  Google Scholar 

  • Wang C, Bomberg E, Billington C, Levine A, Kotz CM (2007b) Brain-derived neurotrophic factor in the hypothalamic paraventricular nucleus reduces energy intake. Am J Physiol Regul Integr Comp Physiol 293:R1003–R1012

    PubMed  CAS  Google Scholar 

  • Wang C, Bomberg E, Levine A, Billington C, Kotz CM (2007c) Brain-derived neurotrophic factor in the ventromedial nucleus of the hypothalamus reduces energy intake. Am J Physiol Regul Integr Comp Physiol 293:R1037–R1045

    PubMed  CAS  Google Scholar 

  • Wang C, Bomberg E, Billington CJ, Levine AS, Kotz CM (2010a) Brain-derived neurotrophic factor (BDNF) in the hypothalamic ventromedial nucleus increases energy expenditure. Brain Res 1336:66–77

    PubMed  CAS  Google Scholar 

  • Wang C, Godar RJ, Billington CJ, Kotz CM (2010b) Chronic administration of brain-derived neurotrophic factor in the hypothalamic paraventricular nucleus reverses obesity induced by high-fat diet. Am J Physiol Regul Integr Comp Physiol 298:R1320–R1332

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang J, Carnicella S, Ahmadiantehrani S, He DY, Barak S, Kharazia V, Ben Hamida S, Zapata A, Shippenberg TS, Ron D (2010c) Nucleus accumbens-derived glial cell line-derived neurotrophic factor is a retrograde enhancer of dopaminergic tone in the mesocorticolimbic system. J Neurosci 30:14502–14512

    PubMed Central  PubMed  CAS  Google Scholar 

  • Watt MJ, Dzamko N, Thomas WG, Rose-John S, Ernst M, Carling D, Kemp BE, Febbraio MA, Steinberg GR (2006) CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nat Med 12:541–548

    PubMed  CAS  Google Scholar 

  • Williams LR (1991) Hypophagia is induced by intracerebroventricular administration of nerve growth factor. Exp Neurol 113:31–37

    PubMed  CAS  Google Scholar 

  • Williams DL, Kaplan JM, Grill HJ (2000) The role of the dorsal vagal complex and the vagus nerve in feeding effects of melanocortin-3/4 receptor stimulation. Endocrinology 141:1332–1337

    PubMed  CAS  Google Scholar 

  • Williams DL, Baskin DG, Schwartz MW (2009) Hindbrain leptin receptor stimulation enhances the anorexic response to cholecystokinin. Am J Physiol Regul Integr Comp Physiol 297:R1238–R1246

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xu B, Dube MG, Kalra PS, Farmerie WG, Kaibara A, Moldawer LL, Martin D, Kalra SP (1998) Anorectic effects of the cytokine, ciliary neurotropic factor, are mediated by hypothalamic neuropeptide Y: comparison with leptin. Endocrinology 139:466–473

    PubMed  CAS  Google Scholar 

  • Xu B, Goulding EH, Zang K, Cepoi D, Cone RD, Jones KR, Tecott LH, Reichardt LF (2003) Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci 6:736–742

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xu AW, Ste-Marie L, Kaelin CB, Barsh GS (2007) Inactivation of signal transducer and activator of transcription 3 in proopiomelanocortin (Pomc) neurons causes decreased pomc expression, mild obesity, and defects in compensatory refeeding. Endocrinology 148:72–80

    PubMed  CAS  Google Scholar 

  • Yan Q, Radeke MJ, Matheson CR, Talvenheimo J, Welcher AA, Feinstein SC (1997) Immunocytochemical localization of TrkB in the central nervous system of the adult rat. J Comp Neurol 378:135–157

    PubMed  CAS  Google Scholar 

  • Yang F, Feng L, Zheng F, Johnson SW, Du J, Shen L, Wu CP, Lu B (2001) GDNF acutely modulates excitability and A-type K(+) channels in midbrain dopaminergic neurons. Nat Neurosci 4:1071–1078

    PubMed  CAS  Google Scholar 

  • Yeo GS, Connie Hung CC, Rochford J, Keogh J, Gray J, Sivaramakrishnan S, O’Rahilly S, Farooqi IS (2004) A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat Neurosci 7:1187–1189

    PubMed  CAS  Google Scholar 

  • Zamir N, Skofitsch G, Jacobowitz DM (1986) Distribution of immunoreactive melanin-concentrating hormone in the central nervous system of the rat. Brain Res 373:240–245

    PubMed  CAS  Google Scholar 

  • Zheng H, Corkern M, Stoyanova I, Patterson LM, Tian R, Berthoud HR (2003) Peptides that regulate food intake: appetite-inducing accumbens manipulation activates hypothalamic orexin neurons and inhibits POMC neurons. Am J Physiol Regul Integr Comp Physiol 284:R1436–R1444

    PubMed  CAS  Google Scholar 

  • Zheng H, Patterson LM, Morrison C, Banfield BW, Randall JA, Browning KN, Travagli RA, Berthoud HR (2005) Melanin concentrating hormone innervation of caudal brainstem areas involved in gastrointestinal functions and energy balance. Neuroscience 135:611–625

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg 2014

About this chapter

Cite this chapter

Rios, M. (2014). Neurotrophins and the Regulation of Energy Balance and Body Weight. In: Lewin, G., Carter, B. (eds) Neurotrophic Factors. Handbook of Experimental Pharmacology, vol 220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45106-5_11

Download citation

Publish with us

Policies and ethics