Skip to main content

Mechanism Design for Aggregating Energy Consumption and Quality of Service in Speed Scaling Scheduling

  • Conference paper
Web and Internet Economics (WINE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8289))

Included in the following conference series:

Abstract

We consider a strategic game, where players submit jobs to a machine that executes all jobs in a way that minimizes energy while respecting the jobs’ deadlines. The energy consumption is then charged to the players in some way. Each player wants to minimize the sum of that charge and of their job’s deadline multiplied by a priority weight. Two charging schemes are studied, the proportional cost share which does not always admit pure Nash equilibria, and the marginal cost share, which does always admit pure Nash equilibria, at the price of overcharging by a constant factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, S.: Energy-efficient algorithms. Communications of the ACM 53(5), 86–96 (2010)

    Article  MathSciNet  Google Scholar 

  2. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization. ACM Transactions on Algorithms (TALG) 3(4), 49 (2007)

    Article  MathSciNet  Google Scholar 

  3. Angel, E., Bampis, E., Kacem, F.: Energy aware scheduling for unrelated parallel machines. In: 2012 IEEE International Conference on Green Computing and Communications (GreenCom), pp. 533–540. IEEE (2012)

    Google Scholar 

  4. Bansal, N., Chan, H.-L., Katz, D., Pruhs, K.: Improved bounds for speed scaling in devices obeying the cube-root rule. Theory of Computing 8, 209–229 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temperature. Journal of the ACM (JACM) 54(1), 3 (2007)

    MathSciNet  Google Scholar 

  6. Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N., Buyuktosunoglu, A., Wellman, J., Zyuban, V., Gupta, M., Cook, P.W.: Power-aware microarchitecture: Design and modeling challenges for next-generation microprocessors. IEEE Micro 20(6), 26–44 (2000)

    Article  Google Scholar 

  7. Carrasco, R.A., Iyengar, G., Stein, C.: Energy aware scheduling for weighted completion time and weighted tardiness. Technical report, arxiv.org (2011)

    Google Scholar 

  8. Chan, S.-H., Lam, T.-W., Lee, L.-K.: Non-clairvoyant speed scaling for weighted flow time. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 23–35. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Irani, S., Pruhs, K.R.: Algorithmic problems in power management. ACM SIGACT News 36(2), 63–76 (2005)

    Article  Google Scholar 

  10. Li, M.G., Yao, A.C., Yao, F.F.: Discrete and continuous min-energy schedules for variable voltage processor. Proceedings of the National Academy of Sciences of the United States of America, PNAS 2006 103, 3983–3987 (2006)

    Article  Google Scholar 

  11. Megow, N., Verschae, J.: Dual techniques for scheduling on a machine with varying speed. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 745–756. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behavior 14, 124–143 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Moulin, H., Shenker, S.: Strategyproof sharing of submodular costs: budget balance versus efficiency. Economic Theory 18(3), 511–533 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pruhs, K., Uthaisombut, P., Woeginger, G.: Getting the best response for your erg. ACM Transactions on Algorithms (TALG) 4(3), 38 (2008)

    MathSciNet  Google Scholar 

  15. Vasquez, O.C.: Energy in computing systems with speed scaling: optimization and mechanisms design. Technical report, arxiv.org (2012)

    Google Scholar 

  16. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced cpu energy. In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science, FOCS 1995, pp. 374–382. IEEE Computer Society, Washington, DC (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dürr, C., Jeż, Ł., Vásquez, Ó.C. (2013). Mechanism Design for Aggregating Energy Consumption and Quality of Service in Speed Scaling Scheduling. In: Chen, Y., Immorlica, N. (eds) Web and Internet Economics. WINE 2013. Lecture Notes in Computer Science, vol 8289. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45046-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45046-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45045-7

  • Online ISBN: 978-3-642-45046-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics