Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8000))

Abstract

Our aim in this paper is to point out a surprising formal connection, between two topics which seem on face value to have nothing to do with each other: relational database theory, and the study of non-locality and contextuality in the foundations of quantum mechanics. We shall show that there is a remarkably direct correspondence between central results such as Bell’s theorem in the foundations of quantum mechanics, and questions which arise naturally and have been well-studied in relational database theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)

    MATH  Google Scholar 

  2. Abramsky, S.: Relational Hidden Variables and Non-Locality. Studia Logica 101(2), 411–452 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abramsky, S., Brandenburger, A.: The sheaf-theoretic structure of non-locality and contextuality. New Journal of Physics 13(2011), 113036 (2011)

    Article  Google Scholar 

  4. Abramsky, S., Gottlob, G., Kolaitis, P.: Robust constraint satisfaction and local hidden variables in quantum mechanics. In: Rossi, F. (ed.) Proceedings of the International Joint Conference in Artificial Intelligence (IJCAI) (2013)

    Google Scholar 

  5. Abramsky, S., Hardy, L.: Logical Bell Inequalities. Physical Review A 85, 062114 (2012)

    Article  Google Scholar 

  6. Abramsky, S., Mansfield, S., Barbosa, R.S.: The cohomology of non-locality and contextuality. In: Proceedings of Quantum Physics and Logic 2011. EPTCS, vol. 95, pp. 1–15 (2012)

    Google Scholar 

  7. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes. Journal of the ACM (JACM) 30(3), 479–513 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1(3), 195–200 (1964)

    Google Scholar 

  9. Buneman, P., Tan, W.C.: Provenance in databases. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 1171–1173. ACM (2007)

    Google Scholar 

  10. Cabello, A., Estebaranz, J.M., García-Alcaine, G.: Bell-Kochen-Specker theorem: A proof with 18 vectors. Physics Letters A 212(4), 183–187 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: Why, how, and where. Foundations and Trends in Databases 1(4), 379–474 (2009)

    Article  Google Scholar 

  12. Fagin, R., Mendelzon, A.O., Ullman, J.D.: A simplified universal relation assumption and its properties. ACM Transactions on Database Systems (TODS) 7(3), 343–360 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Golan, J.S.: Semirings and their Applications. Springer (1999)

    Google Scholar 

  14. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 31–40. ACM (2007)

    Google Scholar 

  15. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bell’s theorem. In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, pp. 69–72. Kluwer (1989)

    Google Scholar 

  16. Hardy, L.: Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Physical Review Letters 68(20), 2981–2984 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Honeyman, P., Ladner, R.E., Yannakakis, M.: Testing the universal instance assumption. Information Processing Letters 10(1), 14–19 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics 17(1), 59–87 (1967)

    MathSciNet  MATH  Google Scholar 

  19. Korth, H.F., Kuper, G.M., Feigenbaum, J., Van Gelder, A., Ullman, J.D.: SYSTEM/U: A database system based on the universal relation assumption. ACM Transactions on Database Systems (TODS) 9(3), 331–347 (1984)

    Article  Google Scholar 

  20. Mac Lane, S.: Categories for the working mathematician, vol. 5. Springer (1998)

    Google Scholar 

  21. Maier, D., Ullman, J.D.: Maximal objects and the semantics of universal relation databases. ACM Transactions on Database Systems (TODS) 8(1), 1–14 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Maier, D., Ullman, J.D., Vardi, M.Y.: On the foundations of the universal relation model. ACM Transactions on Database Systems (TODS) 9(2), 283–308 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mermin, N.D.: Quantum mysteries revisited. Am. J. Phys. 58(8), 731–734 (1990)

    Article  MathSciNet  Google Scholar 

  24. Nielsen, M.Q.C., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

    Google Scholar 

  25. Pierce, B.C.: Basic category theory for computer scientists. The MIT Press (1991)

    Google Scholar 

  26. Ullman, J.D.: Principles of database systems. Prentice-Hall (1983)

    Google Scholar 

  27. Vorob’ev, N.N.: Consistent families of measures and their extensions. Theory of Probability and its Applications 7, 147 (1962)

    Article  Google Scholar 

  28. Waegell, M., Aravind, P.K.: Parity proofs of the Kochen-Specker theorem based on the 24 rays of Peres. Arxiv preprint arXiv:1103.6058v1 (2011)

    Google Scholar 

  29. Yanofsky, N.S., Mannucci, M.A.: Quantum computing for computer scientists, vol. 20. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abramsky, S. (2013). Relational Databases and Bell’s Theorem. In: Tannen, V., Wong, L., Libkin, L., Fan, W., Tan, WC., Fourman, M. (eds) In Search of Elegance in the Theory and Practice of Computation. Lecture Notes in Computer Science, vol 8000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41660-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41660-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41659-0

  • Online ISBN: 978-3-642-41660-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics