Skip to main content

Predictions of Energy Absorption of Aligned Carbon Nanotube/Epoxy Composites

  • Chapter
  • First Online:
Structural Nanocomposites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1228 Accesses

Abstract

The potential of aligned CNT/epoxy nanocomposites towards energy absorption applications was demonstrated using finite element modeling. For that, two cases studies were carried out: (1) prediction of crack resistance characteristics of epoxy reinforced with aligned double-walled CNTs (DWCNTs), and (2) prediction of rate-dependent compressive response of epoxy filled with aligned single-walled CNTs (SWCNTs). It was found that reinforcing epoxy with CNTs can significantly reduce the crack driving force in epoxy and increase strains to failure as a result of the damage propagation at the CNT–epoxy interphase. Particularly, enhancements of shear stiffness, shear strength and mode II fracture energy of CNT–epoxy interphases via CNT functionalization and minor increases of low sp3-bond densities in the interwall phase of DWCNTs were shown to increase the crack resistance of the nanocomposite. Furthermore, it was found that the linear and nonlinear compressive deformations and thus the energy absorption characteristics of epoxies can be significantly affected by the presence of CNTs. Specifically, the initial stiffness was increased and the post-yield behaviour of the nanocomposite showed enhanced strain stiffening, both with increasing CNT loading and increasing CNT aspect ratio. Additionally, a combined effect of aspect ratio and volume fraction on energy absorption characteristics was found. This suggests that the average aspect ratio of CNTs should be carefully selected in order to maximise the energy absorption for the given CNT volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barber, A.H., Andrews, R., Schadler, L.S., Wagner, H.D.: On the tensile strength distribution of multiwalled carbon nanotubes. Appl. Phys. Lett. 87, 203106 (2005)

    Article  Google Scholar 

  2. Barber, A.H., Kaplan-Ashiri, I., Cohen, S.R., Tenne, R., Wagner, H.D.: Stochastic strength of nanotubes: an appraisal of available data. Compos. Sci. Technol. 65, 2380–2384 (2005)

    Article  Google Scholar 

  3. Barber, A.H., Cohen, S.R., Eitan, A., Schadler, L.S., Wagner, H.D.: Fracture transitions at a carbon-nanotube/polymer interface. Adv. Mater. 18, 83–87 (2006)

    Article  Google Scholar 

  4. Buckley, C.P., Harding, J., Hou, J.P., Ruiz, C., Trojanowski, A.: Deformation of thermosetting resins at impact rates of strain. Part I: Experimental study. J. Mech. Phys. Solids 49, 1517–1538 (2001)

    Article  Google Scholar 

  5. Buckley, C.P., Dooling, P.J., Harding, J., Ruiz, C.: Deformation of thermosetting resins at impact rates of strain. Part 2: Constitutive model with rejuvenation. J. Mech. Phys. Solids 52, 2355–2377 (2004)

    Article  Google Scholar 

  6. Byrne, E.M., Letertre, A., McCarthy, M.A., Curtin, W.A., Xia, Z.: Optimizing load transfer in multiwall nanotubes through interwall coupling: theory and simulation. Acta Mater. 58, 6324–6333 (2010)

    Article  Google Scholar 

  7. Cooper, C.A., Young, R.J., Halsall, M.: Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Compos. Part A-Appl. S. 32, 401–411 (2001)

    Article  Google Scholar 

  8. Cumings, J., Zettl, A.: Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602–604 (2000)

    Article  Google Scholar 

  9. Frankland, S.J.V., Caglar, A., Brenner, D.W., Griebel, M.J.: Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces. J. Phys. Chem. B 106, 3046–3048 (2002)

    Article  Google Scholar 

  10. Ganesan, Y., Peng, C., Lu, Y., Loya, P.E., Moloney, P., Barrera, E., Yakobson, B.I., Tour, J.M., Ballarini, R., Lou, J.: Interfacial toughness of carbon nanotube reinforced epoxy composites. ACS Appl. Mater. Int. 3, 129–134 (2011)

    Article  Google Scholar 

  11. Gerlach, R., Siviour, C.R., Petrinic, N., Wiegand, J.: Experimental characterisation and constitutive modelling of RTM-6 resin under impact loading. Polymer 49, 2728–2737 (2008)

    Article  Google Scholar 

  12. Gojny, F.H., Wichmann, M., Fiedler, B., Schulte, K.: Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—A comparative study. Compos. Sci. Technol. 65, 2300–2313 (2005)

    Article  Google Scholar 

  13. Hu, N., Li, Y., Nakamura, T., Katsumata, T., Koshikawa, T., Ara, M.: Reinforcement effects of MWCNT and VGCF in bulk composites and interlayer of CFRP laminates. Compos. Part B-Eng. 43, 3–9 (2012)

    Article  Google Scholar 

  14. Krueger, R.: Virtual crack closure technique: History, approach, and applications. Appl. Mech. Rev. 57, 109–143 (2004)

    Article  Google Scholar 

  15. Lourie, O., Wagner, H.D.: Evidence of stress transfer and formation of fracture clusters in carbon nanotube-based composites. Compos. Sci. Technol. 59, 975–977 (1999)

    Article  Google Scholar 

  16. Peigney, A., Laurent, C., Flahaut, E., Bacsa, R.R., Rousset, A.: Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39, 507–514 (2001)

    Article  Google Scholar 

  17. Pregler, S.K., Sinnott, S.B.: Molecular dynamics simulations of electron and ion beam irradiation of multiwalled carbon nanotubes: The effects on failure by inner tube sliding. Phys. Rev. B 73, 224106 (2006)

    Google Scholar 

  18. Treacy, M.M., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 38, 678–680 (1996)

    Article  Google Scholar 

  19. Wang, C.Y., Zhang, L.C.: A critical assessment of the elastic properties and effective wall thickness of single-walled carbon nanotubes. Nanotechnology 19, 195704 (2008)

    Article  Google Scholar 

  20. Weidt, D., Figiel, Ł., Buggy, M.: Preparation testing and modelling of nanocomposite surface coatings to improve the impact behaviour of advanced composite laminates. Mater. Sci. Forum 714, 3–1 (2012)

    Article  Google Scholar 

  21. Weidt, D., Figiel, Ł., Buggy, M.: Prediction of energy absorption characteristics of aligned carbon nanotube/epoxy nanocomposites. IOP Conf. Ser: Mater. Sci. Eng. 40, 012028 (2012)

    Article  Google Scholar 

  22. Wernik, J.M., Meguid, S.A.: Recent developments in multifunctional nanocomposites using carbon nanotubes. Appl. Mech. Rev. 63, 050801 (2010)

    Article  Google Scholar 

  23. Wicks, S.S., de Villoris, G.R., Wardle, B.L.: Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Compos. Sci. Technol. 70, 20–28 (2010)

    Article  Google Scholar 

  24. Yokozeki, T., Iwahori, Y., Ishiwata, S., Enomoto, K.: Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNT-dispersed epoxy. Compos. Part A-Appl. S. 38, 449–460 (2007)

    Google Scholar 

  25. Zhang, W., Picu, R.C., Koratkar, N.: Suppression of fatigue crack growth in carbon nanotube composites. Appl. Phys. Lett. 91, 193109 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The project is supported by the Irish Research Council (IRC). Computational facilities and support are provided by the SFI/HEA Irish Centre for High-End Computing (ICHEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ł. Figiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weidt, D., Figiel, Ł. (2013). Predictions of Energy Absorption of Aligned Carbon Nanotube/Epoxy Composites. In: Njuguna, J. (eds) Structural Nanocomposites. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40322-4_9

Download citation

Publish with us

Policies and ethics