Skip to main content

Energy Absorption and Low-Velocity Impact Performance of Nanocomposites: Cones and Sandwich Structures

  • Chapter
  • First Online:
Structural Nanocomposites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1260 Accesses

Abstract

The increasing need for high performance structures, in the energy and transport industry, demands a continuous development of new engineering materials. Unique mechanical properties together with low specific weight can be achieved by the combination of various constituent materials into one macroscopic composite material. Coupling of the high strength reinforcement with supporting matrix creates a novel material with the improved characteristics, which could never be obtained using either of the constituents separately. These types of materials are particularly desirable in structures where a high strength to weight ratio is of great importance. In this chapter, two case studies are provided one on nanophased sandwich composites with polyurethane/layered silicate foam cores and the other on thermoplastic glass-fibre and nano-silica reinforced nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Njuguna, J., Pielichowski, K., Desai, S.: Nanofiller‐reinforced polymer nanocomposites. Polym. Adv. Technol. 19(8), 947--959 (2008)

    Google Scholar 

  2. Leszczyńska, A., Njuguna, J., Pielichowski, K., Banerjee, J.R.: Polymer/montmorillonite nanocomposites with improved thermal properties: Part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. Thermochimica Acta. 454(1), 1–22 (2007/2/15)

    Google Scholar 

  3. Leszczyńska, A., Njuguna, J., Pielichowski, K., Banerjee, J.R.: Polymer/montmorillonite nanocomposites with improved thermal properties: Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochimica Acta. 453(2), 75–96 (2007/2/1)

    Google Scholar 

  4. Njuguna, J., Pielichowski, K., Desai, D.: Nanofiller-reinforced polymer nanocomposites. Polym. Adv. Technol. 19(8), 947–959 (2008)

    Article  Google Scholar 

  5. Mamalis, A.G.: Crashworthiness of composite thin-walled structural components. Technomic Pub. Co., Lancaster, Pa (1998)

    Google Scholar 

  6. Njuguna, J.: Crashworthiness of composite materials, Cranfield University, School of Applied Sciences, lecture notes ( 2012)

    Google Scholar 

  7. Farley, G.L.: Effect of fiber and matrix maximum strain on the energy absorption of composite materials. J. Compos. Mater. 20(4), pp. 322 (1986)

    Google Scholar 

  8. Meressi, T., Paden, B.: Buckling control of a flexible beam using piezoelectric actuators. J. Guidance Control and Dyn. 16(5), 977–980 (1993)

    Article  Google Scholar 

  9. Farley, G. L.: The effects of crushing speed on the energy-absorption capability of composite tubes. J. Compos. Mater. 25(10), pp. 1314 (1991)

    Google Scholar 

  10. Thornton, P.: The crush behavior of pultruded tubes at high strain rates. J. Compos. Mater. 24(6), pp. 594 (1990)

    Google Scholar 

  11. Thornton, P.: Energy absorption in composite structures. J. Compos. Mater. 13(3), pp. 247 (1979)

    Google Scholar 

  12. Hamada, H., Coppola, J., Hull, D., Maekawa, Z., Sato, H.: Comparison of energy absorption of carbon/epoxy and carbon/PEEK composite tubes. Compos. 23(4), 245--252 (1992)

    Google Scholar 

  13. Yuan, Q., Misra, R.: Impact fracture behavior of clay-reinforced polypropylene nanocomposites. Polym. 47(12), 4421--4433 (2006)

    Google Scholar 

  14. Sun, L., Gibson, R.F., Gordaninejad, F., Suhr, J.: Energy absorption capability of nanocomposites: A review. Compos. Sci. Technol. 69(14), 2392--2409 (2009)

    Google Scholar 

  15. Bartczak, Z., Argon, A.S., Cohen, R.E., Weinberg, M.: Toughness mechanism in semi-crystalline polymer blends: I. High-density polyethylene toughened with rubbers. Polym. 40(9), 2331--2346 (1999)

    Google Scholar 

  16. Bartczak, Z., Argon, A.S., Cohen, R.E., Weinberg, M.: Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles. Polym. 40(9), 2347--2365 (1999)

    Google Scholar 

  17. Viana, J.: Polymeric materials for impact and energy dissipation. Plast., Rubber Compos. 35(6--7), 260--267 (2006)

    Google Scholar 

  18. Wang, J., Fang, Z., Gu, A., Xu, L., Liu, F.: Effect of amino‐functionalization of multi‐walled carbon nanotubes on the dispersion with epoxy resin matrix. J. Appl. Polym. Sci. 100(1), 97--104 (2006)

    Google Scholar 

  19. Cooper, C.A., Ravich, D., Lips, D., Mayer, J., Wagner, H.D.: Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix. Compos. Sci. Technol. 62(7--8), 1105--1112 (2002)

    Google Scholar 

  20. Kireitseu, M., Hui, D., Tomlinson, G.: Advanced shock-resistant and vibration damping of nanoparticle-reinforced composite material. Compos. B Eng. 39(1), 128--138 (2008)

    Google Scholar 

  21. Zhang, H., Zhang, Z., Friedrich, K., Eger, C.: Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater. 54(7), 1833--1842 (2006)

    Google Scholar 

  22. Javni, I., Zhang, W., Karajkov, V., Petrovic, Z., Divjakovic, V.: Effect of nano-and micro-silica fillers on polyurethane foam properties. J. Cell. Plast. 38(3), pp. 229 (2002)

    Google Scholar 

  23. Chen, J., Huang, Z., Zhu, J.: Size effect of particles on the damage dissipation in nanocomposites. Compos. Sci. Technol. 67(14), 2990--2996 (2007)

    Google Scholar 

  24. Caprino, G., Teti, R.: Impact and post-impact behavior of foam core sandwich structures. Compos. Struct. 29(1), 47–55 (1994)

    Article  Google Scholar 

  25. Anderson, T., Madenci, E.: Experimental investigation of low-velocity impact characteristics of sandwich composites, Composite Structures. 50(3), 239–247 (2000/11)

    Google Scholar 

  26. Mines, R.A.W., Worrall, C.M., Gibson, A.G.: Low velocity perforation behaviour of polymer composite sandwich panels. Int. J. Impact Eng. 21(10), 855–879 (1998)

    Article  Google Scholar 

  27. Lee, L.J., Zeng, C., Cao, X., Han, X., Shen, J., Xu, G.: Polymer nanocomposite foams. Compos. Sci. Technol. 65(15–16), 2344–2363 (2005)

    Article  Google Scholar 

  28. Cao, X., James Lee, L., Widya, T., Macosko, C.: Polyurethane/clay nanocomposites foams: Processing, structure and properties. Polymer 46(3), 775–783 (2005)

    Article  Google Scholar 

  29. Mahfuz, H., Islam, M.S., Rangari, V.K., Saha, M.C., Jeelani, S.: Response of sandwich composites with nanophased cores under flexural loading, Composites Part B: Engineering. 35(6–8), 543–550 (2004/0)

    Google Scholar 

  30. Hosur, M.V., Mohammed, A.A., Zainuddin, S., Jeelani, S.: Processing of nanoclay filled sandwich composites and their response to low-velocity impact loading. Compos. Struct. 82(1), 101--116 (2008)

    Google Scholar 

  31. Wetzel, B., Rosso, P., Haupert, F., Friedrich, K.: Epoxy nanocomposites-fracture and toughening mechanisms. Eng. Fract. Mech. 73(16), 2375--2398 (2006)

    Google Scholar 

  32. Subramaniyan, A.K., Sun, C.: Toughening polymeric composites using nanoclay: Crack tip scale effects on fracture toughness. Compos. A Appl. Sci. Manuf. 38(1), 34--43 (2007)

    Google Scholar 

  33. Njuguna, J., Michalowski, S., Pielichowski, K., Kayvantash, K., Walton, A.: Improved car crash protection. SPE Plastic Research Online (2010). 10.1002/spepro.003061

  34. Hussain, F., Hojjati, M., Okamoto, M., Gorga, R.E.: Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview. J. Compos. Mater. 40(17), pp. 1511 (2006)

    Google Scholar 

  35. Ng, C., Schadler, L., Siegel, R.: Synthesis and mechanical properties of TiO2-epoxy nanocomposites. Nanostruct. Mater. 12(1--4), 507--510 (1999)

    Google Scholar 

  36. Ma, J., Mo, M.S., Du, X.S., Rosso, P., Friedrich, K., Kuan, H.C.: Effect of inorganic nanoparticles on mechanical property, fracture toughness and toughening mechanism of two epoxy systems. Polym. 49(16), 3510--3523 (2008)

    Google Scholar 

  37. Guo, Y., Li, Y.: Quasi-static/dynamic response of SiO2-epoxy nanocomposites. Mater. Sci. Eng. A. 458(1--2), 330--335 (2007)

    Google Scholar 

  38. Han, J., Cho, K.: Nanoparticle-induced enhancement in fracture toughness of highly loaded epoxy composites over a wide temperature range. J. Mater. Sci. 41(13), 4239--4245 (2006)

    Google Scholar 

  39. Njuguna, J., Silva, F., Sachse, S.: Nanocomposites for vehicle structural applications” in nanofibers—production, properties and functional applications, Lin, T. (ed.) In Tech Press, (ISBN: 978-953 307 420 7) (2011)

    Google Scholar 

  40. Silva, F., Sachse, S., Njuguna, J.: Energy absorption characteristics of nano-composite conical structures, IOP Conf. Ser.: Materials Science and Engineering 40 012010 doi:10.1088/1757-899X/40/1/012010 (2012)

  41. Silva, F., Njuguna, J., Sachse, S., Pielichowski, K., Leszczynska, A., Gianocolli, M.: The influence of multiscale fillers reinforcement into impact resistance and energy absorption properties of polyamide 6 and polypropylene nanocomposite structures. Mater. Des. 50, 244–252 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the European Commission financial support through the FP7 Project- CP-FP, Project Reference No.: 228536– 2. Support from Research Councils Unite Kingdom (RCUK) and the Engineering and Physical Sciences Research Council (EPSRC) equipment pool is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Njuguna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Njuguna, J., Sachse, S., Silva, F. (2013). Energy Absorption and Low-Velocity Impact Performance of Nanocomposites: Cones and Sandwich Structures. In: Njuguna, J. (eds) Structural Nanocomposites. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40322-4_8

Download citation

Publish with us

Policies and ethics