Skip to main content

Ecological Assessment of Nano Materials for the Production of Electrostatic/Electrochemical Energy Storage Systems

  • Chapter
  • First Online:
Structural Nanocomposites

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Electrochemical double layer capacitors, also known as supercapacitors are considered as a promising option for stationary or mobile electric energy storage. At present lithium ion and nickel metal hydride batteries are used for automotive applications. In comparison to this type of batteries supercapacitors possess a high specific power, but a relatively low specific energy. Therefore, the goal of ongoing research is to develop a new generation of supercapacitors with high specific power and high specific energy. To reach this development goal particularly nano materials are under investigation on cell level. In the presented study the ecological implications (regarding known environmental effects) of carbon based nano materials are analysed using Life Cycle Assessment (LCA). Major attention is paid to efficiency gains of nano material production due to scaling up of such processes from laboratory to industrial production scales. Furthermore, a developed approach will be displayed, how to assess the environmental impact of nano materials on an automotive system level over the whole life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baumann, M., Balint, S., Dura, H., Weil, M.: The contribution of electric vehicles to the changes of airborne emissions. In: IEEE—International Energy Conference and Exhibition (Hrsg.): Proceedings of the IEEE-Xplore International Energy Conference and Exhibition (EnergyCon), Florenz, 09.-12.09.2012. 2012, S. 1.189-1.194. (2012). doi:978-1-4673-1

    Google Scholar 

  2. Weil, M., Ziemann, S., Schebek, L.: How to access the availability of resources for new technologies? Case study: Lithium a strategic metal for emerging technologies. Rev. de Metall. 106(12), 554–558 (2009)

    Article  Google Scholar 

  3. Bertoldi, O., Berger, S.: WP2_5Energy_3Thermoelectricity.pdf. European commission, observatory NANO (2009)

    Google Scholar 

  4. Harrop, P., Zhitomirsky, V.: Electrochemical double layer capacitors: Supercapacitors 2013–2023. IDTechEx. www.IDTechEx.com/EDLC (2012)

  5. Winter, M., Brodd, R.J.: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4269 (2004)

    Article  Google Scholar 

  6. Diederich, L., Barborini, E., Piseri, P., Podesta, A., Milani, P., Schneuwly, A., Gallay, R.: Supercapacitors based on nanostructured carbon electrodes grown by cluster-beam deposition. Appl. Phys. Lett. 75(17), 2662–2664 (1999). doi:10.1063/1.125111

    Google Scholar 

  7. Lei, C., Markoulidis, F., Wilson, P., Lekakou C.: Reduction of the internal resistance of carbon electrodes for an electric double-layer capacitor (EDLC). The First International Conference on Materials, Energy and Environments (ICMEE), Toledo, Ohio, USA, 09–11 May 2012

    Google Scholar 

  8. Snook, G.A., Kao, P., Best, A.S.: Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196(1), 1–12 (2011). doi:10.1016/j.jpowsour.2010.06.084

    Article  Google Scholar 

  9. El-Kady, M.F., Strong, V., Dubin, S., Kaner, R.B.: Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science. 335(6074), 1326–1330. 16 Mar 2012

    Google Scholar 

  10. Xu, Z., et al.: Electrochemical supercapacitor electrodes from sponge-like graphene nanoarchitectures with ultrahigh power density. J. Phys. Chem. Lett 3, 2928–2933 (2012)

    Article  Google Scholar 

  11. Wilson, M.: Nanotechnology: Basic science and emerging technologies. Chapman & Hall/CRC

    Google Scholar 

  12. Weil, M.: System analysis in the early phase of technology development—responsible development and production of carbon nanotube paper. In: Decker, M., Grunwald, A., Knapp M. (Hrsg.): Der Systemblick auf Innovation—Technikfolgenabschätzung in der Technikgestaltung, pp. 301–312. Berlin, Edition Sigma (2012)

    Google Scholar 

  13. Howe, C.S., Harris, A.T.: A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Ind. Eng. Chem. Res. 46(4), 997–1012 (2007)

    Article  Google Scholar 

  14. Hischier, R., Walser, T.: Life cycle assessment of engineered nanomaterials: State of the art and strategies to overcome existing gaps. Sci. Total Environ. 425, 271–282 (2012). doi:10.1016/j.scitotenv.2012.03.001

  15. Fries, R., Greßler, S., Simkó, M.: Kohlenstoff-Nanoröhrchen (Carbon Nanotubes)—Teil ll: Risiken und Regulierungen. nano trust dossiers (024) (Mai)

    Google Scholar 

  16. DIN-ISO 14040.: Environmental management life cycle assessment—requirements and guidelines 14040 (2006)

    Google Scholar 

  17. DIN-ISO 14044.: Environmental management-environmental performance evaluation—requirements and guidelines 14044 (2006–10)

    Google Scholar 

  18. Weil, M., Dura, H., Simon, B., Baumann, M., Zimmermann, B., Ziemann, S., Lei, C., Markoulidis, F., Lekakou, T., Decker, M.: Ecological assessment of nano-enabled supercapacitors for automotive applications. IOP Conf. Ser.: Mater. Sci. Eng. 40 (2012)

    Google Scholar 

  19. Noijuntira, I., Kittisupakorn, P.: Life cycle assessment for the activated carbon production by coconut shells and palm-oil shells. Thailand, Jul 2009

    Google Scholar 

  20. Ecoinvent life cycle inventory database. swiss centre for life cycle inventories. www.ecoinvent.org

  21. Healy, M.L., Dahlben, L.J., Isaacs, J.A.: Environmental assessment of single-walled carbon nanotube processes. J. Ind. Ecol. 12(3), 376–393 (2008)

    Article  Google Scholar 

  22. Steinfeld, M., von Gleich, A.: Entlastungseffekte für die Umwelt durch nanotechnische Verfahren und Produkte. Umweltbundesamt (UBA) (2008)

    Google Scholar 

  23. Kushnir, D., Saden, B.A.: Energy requirements of carbon nanoparticles production. J. Ind. Ecol. 12(3), 360–375 (2008)

    Article  Google Scholar 

  24. Zimmermann, B.: Integration of carbon nanotubes in lithium-ion traction batteries from an environmental perspective. Master-Thesis. Karlsruhe Institute of Technology and University of Applied Science Munich

    Google Scholar 

Download references

Acknowledgments

This research was funded by the European Commission FP7 project “AUTOSUPERCAP”. We would like to express our sincere gratitude also to Regina Fischer and Prof. Dr. Manfred Kappes from the KIT, Division of Physical Chemistry of Microscopic Systems, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Weil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weil, M. et al. (2013). Ecological Assessment of Nano Materials for the Production of Electrostatic/Electrochemical Energy Storage Systems. In: Njuguna, J. (eds) Structural Nanocomposites. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40322-4_12

Download citation

Publish with us

Policies and ethics