Skip to main content

Silver Nanocluster/Silica Composite Coatings Obtained by Sputtering for Antibacterial Applications

  • Chapter
  • First Online:
Structural Nanocomposites

Abstract

Bacterial contamination is a critical issue which concerns different fields related to people and everyday life products and goods. Authors at Politecnico di Torino developed a new silver nanocluster/silica composite coating obtained by sputtering able to confer antibacterial properties to several materials. Silver nanocluster/silica composite coatings were deposited by radio frequency co-sputtering technique on glasses, ceramics, metals and polymers. The sputtering method is extremely versatile and suitable for most of substrates, because it does not require high temperatures which could decrease the mechanical properties of coated materials (e.g. polymers). The main results will be discussed for each coated substrate, in terms of characterization techniques, morphology, composition, antibacterial effect and adhesion to the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tunc, K., Olgun, U.: Microbiology of public telephones. J. Infect. 53(2), 140–143 (2006)

    Article  Google Scholar 

  2. Shia, X., Zhua, X.: Biofilm formation and food safety in food industries. Trends Food Sci. Technol. 20, 407–413 (2009)

    Article  Google Scholar 

  3. Gu, J.: Microbial colonization of polymeric materials for space applications and mechanisms of biodeterioration: a review. Int Biodeterior Biodegrad 59, 170–179 (2007)

    Article  Google Scholar 

  4. Hori, K., Matsumoto, S.: Bacterial adhesion: from mechanism to control. Biochem. Eng. J. 48, 424–434 (2010)

    Article  Google Scholar 

  5. Simoes, M., Simoes, L.C., Vieira, M.J.: A review of current and emerging biofilm control strategies. LWT—Food. Sci Technol. 43, 573–583 (2010)

    Google Scholar 

  6. Wagner, C., Aytac, S., Hansch, G.N.: Biofilm growth on implants: bacteria prefer plasma coats. Int. J. Artif. Organs. 34(9), 811–817 (2011)

    Article  Google Scholar 

  7. Harris, L.G., Richards, R.G.: Staphylococci and implant surfaces: a review. Injury, Int. J. Care Injured 37, S3–S14 (2006)

    Article  Google Scholar 

  8. Subramani, K., Jung, R.E., Molenberg, A., Hammerle, C.H.F.: Biofilm on dental implants: a review of the literature. Int. J. Oral Maxillofac. Implants 24, 616–626 (2009)

    Google Scholar 

  9. Engelsman, A.F., Van der Mei, H.C., Ploeg, R.J., Busscher, H.J.: The phenomenon of infection with abdominal wall reconstruction. Biomaterials 28, 2314–2327 (2007)

    Article  Google Scholar 

  10. Eggimann, P., Sax, H., Pittet, D.: Catheter-related infections. Microbes Infect. 6, 1033–1042 (2004)

    Article  Google Scholar 

  11. Davis, M.F., Iverson, S.A., Baron, P., Vasse, A., Silbergeld, E.K., Lautenbach, E., Morris, D.O.: Household transmission of meticillin-resistant Staphylococcus aureus and other staphylococci. Lancet Infect Dis 12, 703–716 (2012)

    Article  Google Scholar 

  12. Van Houdt R, Mijnendonckx K, Leys N (2012) Microbial contamination monitoring and control during human space mission Planet Space Sci 60:115–120

    Google Scholar 

  13. Ilyin, V.K.: Microbiological status of cosmonauts during orbital spaceflights on Salyut and Mir orbital stations. Acta Astronaut. 56, 839–850 (2005)

    Article  Google Scholar 

  14. Novikova, N., De Boever, P., Poddubko, S., Deshevaya, E., Polikarpov, N., Rakova, N., Coninx, I., Mergeay, M.: Survey of environmental biocontamination on board the International Space Station. Res. Microbiol. 157, 5–12 (2006)

    Article  Google Scholar 

  15. Kousta, M., Mataragas, M., Skandamis, P., Drosinos, E.H.: Prevalence and sources of cheese contamination with pathogens at farm and processing levels. Food Control 21, 805–815 (2010)

    Article  Google Scholar 

  16. Callon, C., Gilbert, F.B., De Cremoux, R., Montel, M.C.: Application of variable number of tandem repeat analysis to determine the origin of S. aureus contamination from milk to cheese in goat cheese farms. Food Control 19, 143–150 (2008)

    Article  Google Scholar 

  17. Temelli, S., Anar, S., Sen, C., Akyuva, P.: Determination of microbiological contamination sources during Turkish white cheese production. Food Control 17, 856–861 (2006)

    Article  Google Scholar 

  18. Rai, M., Yadav, A., Gade, A.: Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76–83 (2009)

    Article  Google Scholar 

  19. Guzman, M., Dille, J., Godet, S.: Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 8, 37–45 (2012)

    Article  Google Scholar 

  20. Ovington LG (2004) The truth about silver. Ostomy Wound Manage 50 (9A): 1 s–10 s

    Google Scholar 

  21. Sondi, I., Salopek-Sondi, B.: Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram negative bacteria. J. Colloid Interf. Sci. 275, 177–182 (2004)

    Article  Google Scholar 

  22. Mirzajani, F., Ghassempour, A., Aliahmadi, A., Esmaeili, M.A.: Antibacterail effect of silver nanoparticles on Staphylococcus aureus. Res. Microbiol. 162, 542–549 (2011)

    Article  Google Scholar 

  23. Wijnhoven, S.W.P., et al.: Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3(2), 109–138 (2009)

    Article  Google Scholar 

  24. Wang, J.X., Wen, L.X., Wang, Z.H., Chen, J.F.: Immobilization of silver on hollow silica nanospheres and nanotubes and their antimicrobial effects. Mater. Chem. Phys. 96, 90–97 (2006)

    Article  Google Scholar 

  25. Bugla-Płoskońska, G., et al.: Bactericidal properties of silica particles with silver islands located on the surface. Int. J. Antimicrob. Ag 29, 738–748 (2007)

    Article  Google Scholar 

  26. Lee, J.M., Lee, Y.G., Kim, D.W., Oh, C., Koo, S.M., Oh, S.G.: Facile and novel route for preparation of silica/silver heterogeneous composite particles with hollow structure. Colloid Surface A 301(1–3), 48–54 (2007)

    Article  Google Scholar 

  27. Masuda, N., Kawashita, M., Kokubo, T.: Antibacterial activity of silver-doped silica glass microspheres prepared by a sol-gel method. J. Biomed. Mat. Res. B 83B(1), 114–120 (2007)

    Article  Google Scholar 

  28. Verne, E., Di Nunzio, S., Bosetti, M., Appendino, P., Vitale Brovarone, C., Maina, G., Cannas, M.: Surface characterization of silver-doped bioactive glass. Biomaterals 26, 5111–5119 (2005)

    Article  Google Scholar 

  29. Di Nunzio, S., Verne’, E.: Process for the production of silver-containing prosthetic devices WO 2006/058906 (2006)

    Google Scholar 

  30. Di Nunzio, S., Vitale Brovarone, C., Spriano, S., Milanese, D., Verne, E., Bergo, V., Maina, G., Spinelli, P.: Silver containing bioactive glasses prepared by molten salt ion exchange. J. Europ. Ceram Soc. 24, 2935–2942 (2004)

    Article  Google Scholar 

  31. Carturan, S., et al.: Formation of silver nanoclusters in transparent polyimides by Ag-K ion-exchange process. Eur. Physic. J D 42, 243–251 (2007)

    Article  Google Scholar 

  32. Kamiiya, Y., Kanamaru, S.: Antibacterial glass and method for producing antibacterial glass WO/2005/087675 (2005)

    Google Scholar 

  33. http://www.yourglass.it/agc-flatglass-europe/news/it/04-09-2007_AB.html

  34. Verné, E., et al.: Surface silver-doping of biocompatible glass to induce antibacterial properties. Part I: massive glass. J. Mater. Sci. Mater. Med. 20, 733–740 (2009)

    Article  Google Scholar 

  35. Borrelli, N F., Morse, D L., Senaratne, W., Verrier, F., Wei, Y.: Coated, Antimicrobial, chemically strengthened glass and method of making, US 2012/0034435 (2012)

    Google Scholar 

  36. http://www.agc-flatglass.sg/products-detail.aspx?id=32

  37. Brook, L.A., et al.: Highly bioactive silver and silver/titania composite films grown by chemical vapour deposition. J. Photoch. Photobio. A187, 53–63 (2007)

    Article  Google Scholar 

  38. Brook, L.A., et al.: Novel multifunctional film. Surf. Coat. Technol. 201, 9373–9377 (2007)

    Article  Google Scholar 

  39. Baia, L., Muresan, D., Baia, M., Popp, J., Simon, S.: Structural properties of silver nanoclusters–phosphate glass composites. Vib. Spectrosc. 43, 313–318 (2007)

    Article  Google Scholar 

  40. Kawashita, M., Tsuneyama, S., Miyaji, F., Kokubo, T., Kozuka, H., Yamamoto, K.: Antibacterial silver-containing silica glass prepared by sol–gel method. Biomaterials 21, 393–398 (2000)

    Article  Google Scholar 

  41. Tarimala, S., Kothari, N., Abidi, N., Hequet, E., Fralick, J., Dai, L.L.: New approach to antibacterial treatment of cotton fabric with silver nanoparticle–doped silica using sol–gel process. J. App. Polym. Sci. 101, 2938–2943 (2006)

    Article  Google Scholar 

  42. Jeon, H.J., Yi, S.C., Oh, S.G.: Preparation and antibacterial effects of Ag–SiO2 thin films by sol–gel method. Biomaterials 24, 4921–4928 (2003)

    Article  Google Scholar 

  43. Tatar, P., Kiraz, N., AsiltĂ¼rk, M., Sayılkan, F., Sayılkan, H., Arpaç, E.: Antibacterial thin films on glass substrate by sol–gel process. J. Inorg. Organomet. Polym. Mater. 17, 525–533 (2007)

    Article  Google Scholar 

  44. JĂ¼rgens, R., Schwindt, S.: Coating compound made of an agent which generates SiO2 with at least two antibacterial agents EP1825752 A1 (2011)

    Google Scholar 

  45. Lei, Z., Wang, D.: Antibacterial sol-gel coating solution, method for preparing antibacterial sol-gel coating solution, antibacterial articles, and method and equipments for preparing antibacterial articles EP1975132A1 (2008)

    Google Scholar 

  46. Sant, S.B., Gill, K.S., Burrell, R.E.: Nanostructure, dissolution and morphology characteristics of microcidal silver films deposited by magnetron sputtering. Acta Biomater. 3, 341–350 (2007)

    Article  Google Scholar 

  47. Dowling, D.P., et al.: Deposition of anti-bacterial silver coatings on polymeric substrates. Thin Solid Films 398–399, 602–606 (2011)

    Google Scholar 

  48. Kim, Y.H., et al.: Synthesis and characterization of antibacterial Ag-SiO2 nanocomposite. J. Phys. Chem. C 111, 3629–3635 (2007)

    Article  Google Scholar 

  49. Wang, J.X., Wen, L.X., Wang, Z.H., Chen, J.F.: Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects. Mater. Chem. Phys. 96, 90–97 (2006)

    Article  Google Scholar 

  50. Kim, Y.H., Lee, D.K., Cha, H.G., Kim, C.W., Kang, Y.C., Kang, Y.S.: Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J. Phys. Chem. B 110, 24923–24928 (2006)

    Article  Google Scholar 

  51. Wakamura M (2008) Antibacterial paint for materials and materials coated therewith EP1985675 (A1)

    Google Scholar 

  52. Wakamura, M.: Antibacterial and anti-staining paint for building material and building material coated therewith EP1522564 (A1) (2005)

    Google Scholar 

  53. Imai, T., Takahashi, T., Hibino, Y.: Coating material, building material and method for coating building material EP2067759 (A2) (2009)

    Google Scholar 

  54. Nakagawa, Y., Iwasaki, Y., Takenaka, K., Shano, M.: Antibacterial laminate EP2018960 (A1) (2009)

    Google Scholar 

  55. Rauscher, H., Perucca, M., Buyle, G.: Plasma technology for hyperfunctional surfaces—food, biomedical, and textile applications Wiley-VCH (2009)

    Google Scholar 

  56. Ferraris, M., Chiaretta, D., Fokine, M., Miola, M.,Verne’, E.: Pellicole antibatteriche ottenute da sputtering e procedimento per conferire proprietà antibatteriche ad un substrato TO2008A000098 (2008)

    Google Scholar 

  57. Ferraris, M., Perero, S., Miola, M., Ferraris, S., Verné, E., Morgiel, J.: Silver nanocluster–silica composite coatings with antibacterial properties. Mater. Chem. Phys. 120, 123–126 (2010)

    Article  Google Scholar 

  58. Ferraris, M., et al.: Chemical, mechanical, and antibacterial properties of silver nanocluster–silica composite coatings obtained by sputtering. Adv. Eng. Mater. 12, B276–B282 (2010)

    Article  Google Scholar 

  59. Ferraris, S., Perero, S., Vernè, E., Battistella, E., Rimondini, L., Ferraris, M.: Surface functionalization of Ag-nanoclusters–silica composite films for biosensing. Mater. Chem. Phys. 130, 1307–1316 (2011)

    Article  Google Scholar 

  60. Balagna, C., et al.: Antibacterial coating on polymer for space application. Mater. Chem. Phy. 135, 714–722 (2012)

    Article  Google Scholar 

  61. Ferraris, M., et al.: Effect of thermal treatments on sputtered silver nanocluster/silica composite coatings on sodalime glasses: ionic exchange and antibacterial activity. J. Nanopart. Res. 14, 1287–1306 (2012)

    Article  Google Scholar 

  62. Baino, F., Pererom S., Miola, M et al.: Rivestimenti e trattamenti superficiali per impartire proprietĂ  antibatteriche a dispositivi per oftalmoplastica. TO2012A000512 (2012)

    Google Scholar 

  63. Ferraris, M., et al.: Silver nanocluster/silica composite coatings obtained by sputtering for antibacterial applications Iop Science Iop Conf. Ser. Mater. Sci. Eng. 40, 012037 (2012)

    Google Scholar 

  64. http://www.composites.polito.it/?p=projects_european_nasla

  65. http://en.wikipedia.org/wiki/NASLA

  66. Beer, C., et al.: Toxicity of silver nanoparticles—Nanoparticle or silver ion? Toxicol. Lett. 208, 286–292 (2012)

    Article  Google Scholar 

  67. NCCLS M2-A9. Performance standards for antimicrobial disk susceptibility tests, approved standard, 9th Edn, NCCLS, Villanova, PA, USA (2003)

    Google Scholar 

  68. ASTM D3359–97 Standard test methods for measuring adhesion by tape test

    Google Scholar 

  69. Cai, W., Zhang, L., Zhong, H., He, G.: Annealing of mesoporous silica loaded with silver nanoparticles within its pores from isothermal sorption. J. Mater. Res. 10, 2888–2895 (1998)

    Article  Google Scholar 

  70. Hoa, X.D., Kirk, A.G., Tabrizian, M.: Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. Biosens. Bioelectron. 23, 151–160 (2007)

    Article  Google Scholar 

  71. Durucan, C., Akkopru, B.: Effect of calcination on microstructure and antibacterial activity of silver-containing silica coatings. J. Biomed. Mater. Res. B Appl. Biomater. 93(2), 448–458 (2010)

    Article  Google Scholar 

  72. Almasri, A.H., Voyiadjis, G.Z.: Nanoindentation in FCC metals: experimental study. Acta Mech. 209, 1–9 (2010)

    Article  Google Scholar 

  73. Lucca, D.A., Herrmann, K., Klopfstein, M.J.: Nanoindentation: measuring methods and applications. CIRP Annals- Manuf. Technol. 59, 803–819 (2010)

    Article  Google Scholar 

  74. Cadogan, D., Stein, J., Grahne, M.: Inflatable composite habitat structures for lunar and mars exploration. Acta Astronaut. 44, 399–406 (1999)

    Article  Google Scholar 

  75. Brandon, E.J., et al.: Structural health management technologies for inflatable/deployable structures: Integrating sensing and self-healing. Acta Astronaut. 68, 883–903 (2011)

    Article  Google Scholar 

  76. Monteiro, D.R., et al.: The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int. J. Antimicrob. Agent 34, 103–110 (2009)

    Article  Google Scholar 

  77. Canganella, F. et al.; Microbial ecology of space confined habitats and biofilm development on space materials: the project MARS500–MICHA. 63rd International Astronautical Congress (2012)

    Google Scholar 

  78. Canganella, F et al.: VIABLE: a current flight experiment on ISS to investigate biocontamination and human life support in space. 63rd International Astronautical Congress (2012)

    Google Scholar 

  79. Kawata, K., Osawa, M., Okabe, S.: In vitro toxicity of silver nanoparticles at non cytotoxic doses to HepG2 human hepatoma cells. Envir. Sci. Technol. 43, 6046–6051 (2009)

    Article  Google Scholar 

  80. Haase, A., Tentschert, J., Jungnickel, H., et al.: Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular response. J. Phys. Conf. Series 304, 012030 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This activity was funded by Regione Piemonte, Italy (NABLA, Nanostructured Antibacterial Layers) and by REA (EU Project-NASLA-FP7-SME-2010-1—Project 262209).

The authors kindly acknowledge Dr Giacomo Fucale (Traumatology Orthopaedics and Occupational Medicine Department, University of Turin, Italy) for antibacterial tests facilities, and all industrial partners of the projects (Thales Alenia Space—IT, Dipromed, Alce Calidad, Easreth, Aero Sekur, Reply, KTH Royal Institute of Technology, Bactiguard).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Balagna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Balagna, C. et al. (2013). Silver Nanocluster/Silica Composite Coatings Obtained by Sputtering for Antibacterial Applications. In: Njuguna, J. (eds) Structural Nanocomposites. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40322-4_10

Download citation

Publish with us

Policies and ethics