Skip to main content

Types of Mycorrhizal Association

  • Chapter
  • First Online:
Desert Truffles

Part of the book series: Soil Biology ((SOILBIOL,volume 38))

Abstract

The following types of mycorrhizas are distinguished:

  • Ectomycorrhizas, which are characterized by a Hartig net and may or may not have a mantle

  • Endomycorrhizas, which have no Hartig net and may or may not have a mantle but are characterized by undifferentiated coil-shaped intracellular hyphae

  • Ectendomycorrhizas, which display a Hartig net with or without a mantle alongside various forms of intracellular coiled or spherical hyphae

The type of mycorrhiza formed depends on the level of auxin secretion by the fungus and on the sensitivity of the plant root to auxin, whether endogenous or induced by phosphate level in the substrate. The microclimate also affects mycorrhizal architecture. For instance, when paired with the plant host Helianthemum almeriense, Terfezia claveryi produces endomycorrhizas outdoors but ectomycorrhizas in the greenhouse and in vitro (with or without a mantle). Moreover, Terfezia boudieri coupled with Helianthemum sessiliflorum produces endomycorrhizas in Tunisia but ectomycorrhizas in the Israeli desert. Yet the effect of climate on mycorrhizal type cannot be interpreted solely in terms of auxin level, and there is evidence that auxin acts in concert with other plant hormones or with plant metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles FB (1965) Auxin stimulation of ethylene evolution. Plant Physiol 41:585–588

    Article  Google Scholar 

  • Arteca RN, De-Sheng T, Schlagnhaufer C, Mandava NB (1983) The effect of brassinosteroid on auxin-induced ethylene production by etiolated mung bean segments. Pysiol Plantarum 59:539–544

    Article  CAS  Google Scholar 

  • Alsheikh AM, Trappe JM (1983) Desert truffles: the genus Tirmania. Trans Br Mycol Soc 81:83–90

    Article  Google Scholar 

  • Awameh MS (1981) The response of Helianthemum salicifolium and H. ledifolium to infection by the desert truffle Terfezia boudieri. Mushroom science. XI. Part II. In: Proceedings of the 11th International Congress on the Cultivation of Edible Fungi, Sydney, Australia, pp. 843–583

    Google Scholar 

  • Barker SJ, Tagu D (2000) The roles of auxins and cytokinins in mycorrhizal symbioses. J Plant Growth Regul 19:144–154

    PubMed  CAS  Google Scholar 

  • Barosso J, Chaves N, Pais MS (1978) Production of indole-3-ethanol and indol-3-acetic acid by mycorrhizal fungus of Ophrys lutea (Orchidaceae). New Phytol 103:745–749

    Article  Google Scholar 

  • Creelman RA, Mason HS, Bensen RJ, Boyer JS, Mullet JE (1990) Water deficit and abscisic acid cause differential inhibition of shoot versus root growth in soybean seedlings. Analysis of growth, sugar accumulation, and gene expression. Plant Physiol 92:205–214

    Article  PubMed  CAS  Google Scholar 

  • Dexheimer J, Gerard J, Leduc JP, Chevalier G (1985) Étude ultrastructurale comparée des associations symbiotiques mycorhiziennes Helianthemum salicifoliumTerfezia claveryi Helianthemum salicifoliumTerfezia leptoderma. Can J Bot 63:582–591

    Article  Google Scholar 

  • Díez J, Manjón JL, Moreno G (2002) Molecular phylogeny of the mycorrhizal desert truffles (Terfezia and Tirmania), host specificity and edaphic tolerance. Mycologia 94(2):247–259

    Article  PubMed  Google Scholar 

  • Ferdman N, Aviram S, Roth-Bejerano N, Trappe J, Kagan-Zur V (2005) Phylogenetic Studies of Terfezia pfeilii and Choiromyces echinulatus (Pezizales) support new genera for southern African truffles: Kalaharituber and Eremiomyces. Mycol Res 109:237–245

    Article  PubMed  CAS  Google Scholar 

  • Fortas Z, Chevalier G (1992) Effet des conditions de culture sur la mycorhization de l’Helianthemum guttatum par trois espèces de terfez des genres Terfezia et Tirmania d’Algérie. Can J Bot 70:2453–2460

    Article  Google Scholar 

  • Gay L, Normand L, Marmeisse B, Sotta B, Debaud JC (1994) Auxin overproducer mutants of Hebeloma cylindrosporum Romagnesi have increased mycorrhizal activity. New Phytol 128:645–657

    Article  CAS  Google Scholar 

  • Gea I, Normand L, Vian B, Gay G (1994) Structural aspects of ectomycorrhiza of Pinus pinaster (Ait.) Sol. formed by an IAA-overproducer mutant of Hebeloma cylindrosporum Romagnesi. New Phytol 128:651–670

    Article  Google Scholar 

  • Gogala N (1991) Regulation of mycorrhizal infection by hormonal factors produced by host and fungi. Experimentia 47:331–339

    Article  CAS  Google Scholar 

  • Gutiérrez A, Morte A, Honrubia M (2003) Morphological characterization of the mycorrhiza formed by Helianthemum almeriense Pau with Terfezia claveryi Chatin and Picoa lefebvrei (Pat.) Maire. Mycorrhiza 13:299–307

    Article  PubMed  Google Scholar 

  • Itai C (1999) Role of phytohormones in plant response to stresses. In: Lerner HR (ed) Plant responses to environmental stresses: from phytochrome to genome reorganization. Marcel Dekker, New York, NY

    Google Scholar 

  • Kagan-Zur V, Kuang J, Tabak S, Taylor FW, Roth-Bejerano N (1999) Potential verification of a host plant for the desert truffle Terfezia pfeilii by molecular methods. Mycol Res 103:1270–1274

    Article  CAS  Google Scholar 

  • Kagan-Zur V (2001) Combating desertification with plants. In: Pasternak D, Schliessel A (eds) Terfezias a family of mycorrhizal edible mushrooms for arid zones. Kluwer Academic Publishers, New York, NY

    Google Scholar 

  • Kagan-Zur V, Zaretsky M, Sitrit Y, Roth-Bejarano N (2008) Hypogeous pezizaceae: physiology and molecular genetics. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics, 3rd edn. Springer, Berlin

    Google Scholar 

  • Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworth and Bisby’s dictionary of the fungi, 9th edn. CAB International, Wallingford

    Google Scholar 

  • Kovács GM, Balázs TK, Calonge FD, Martín MP (2011) The diversity of Terfezia desert truffles: new species and a highly variable species complex with intrasporocarpic nrDNA ITS heterogeneity. Mycologia 103:841–853

    Article  PubMed  Google Scholar 

  • Lassoe T, Hansen K (2007) Truffle trouble: What happened to the Tuberaeles? Mycol Res 111:1075–1099

    Article  Google Scholar 

  • López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–256

    Article  PubMed  Google Scholar 

  • López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    Article  PubMed  Google Scholar 

  • Martin F, Duplessis S, Ditengou F, Lagrange H, Voiblet C, Lapeyrie F (2001) Developmental cross talking in the ectomycorrhizal symbiosis: signals and communication genes. New Phytol 151:145–154

    Article  CAS  Google Scholar 

  • Moreno G, Díez J, Manjón JL (2000) Picoa lefebvrei and Tirmania nivea, two rare hypogeous fungi from Spain. Mycol Res 104:378–381

    Article  Google Scholar 

  • Moreno G, Díez J, Manjón JL (2002) Terfezia boudieri, first records from Europe of a rare vernal hypogeous mycorrhizal fungus. Persoonia (Leiden) 17:637–641

    Google Scholar 

  • Munns R, Sharp RE (1993) Involvement of abscisic acid in controlling plant growth in sol of low water potential. Aust J Plant Physiol 20:425–437

    Article  CAS  Google Scholar 

  • Navarro-Ródenas N, Pérez-Gilabert M, Torrente P, Morte A (2012) The role of phosphorus in the ectendomycorrhiza continuum of desert truffle mycorrhizal plants. Mycorrhiza 22:565–575. doi:10.1007/s00572-012-0434-2

    Article  PubMed  Google Scholar 

  • Navarro-Ródenas A, Bárzana G, Nicolas E, Carra A, Schubert A, Morte A (2013) Expression analysis of aquaporins from desert truffle mycorrhizal symbiosis reveals a fine-tuned regulation under drought. Mol Plant Microbe Interact, http://dx.doi.org/10.1094/MPMI-07-12-0178-R.

  • Pérez-Torres CA, López-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism Involving the TIR1 auxin receptor. Plant Cell 20:3258–3272

    Article  PubMed  Google Scholar 

  • Pitts RJ, Cernak A, Estelle M (1998) Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J 16:553–560

    Article  PubMed  CAS  Google Scholar 

  • Rayle DL, Cleland RE (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99:1271–1274

    Article  PubMed  CAS  Google Scholar 

  • Riley HP (1963) Families of flowering plants of Southern Africa. University of Kentucky Press, Lexington

    Google Scholar 

  • Roth-Bejerano N, Livne D, Kagan-Zur V (1990) Helianthemum-Terfezia relations in different media. New Phytol 114:235–238

    Article  Google Scholar 

  • Slama A, Fortas Z, Boudabous A, Neffati M (2010) Cultivation of an edible desert truffle (Terfezia boudieri Chatin). Afr J Micobiol Res 4:2350–2356

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GTS, Sandberg G, Bhalerao R, Ljung K, Bennetta MJ (2007) Ethylene upregulates biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196

    Article  PubMed  CAS  Google Scholar 

  • Zaretsky M, Kagan-Zur V, Mills D, Roth-Bejerano N (2006) Analysis of mycorrhizal associations formed by Cistus incanus transformed root clones with Terfezia boudieri isolates. Plant Cell Rep 25:62–70

    Article  PubMed  CAS  Google Scholar 

  • Wenkart S, Roth-Bsejerano N, Mills D, Kagan-Zur V (2001) Mycorrhizal associations between Tuber melanosporum mycelia and transformed roots of Cistus incanus. Plant Cell Rep 20:369–373

    Article  CAS  Google Scholar 

  • Wu Y, Spollen WG, Sharp RE, Hetheringtone PR, Fry SC (1994) Root growth maintenance at low water potentials. Plant Physiol 106:607–615

    Article  PubMed  CAS  Google Scholar 

  • Yu YB, Yanf SF (1979) Auxin-induced ethylene production and its inhibition by aminoethoxyvinyiglycine and cobalt ion. Plant Physiol 64:1074–1077

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (1998) Plant physiology, 2nd edn. Sinauer Associates Inc., Sunderland, MA

    Google Scholar 

  • Turgeman T (2013) Pre-symbiotic signal exchange between the host plant Helianthemum sessiliflorum and the desert truffle Terfezia boudieri. Submitted to the Senate of Ben-Gurion University of the Negev, Israel

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurit Roth-Bejerano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roth-Bejerano, N., Navarro-Ródenas, A., Gutiérrez, A. (2014). Types of Mycorrhizal Association. In: Kagan-Zur, V., Roth-Bejerano, N., Sitrit, Y., Morte, A. (eds) Desert Truffles. Soil Biology, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40096-4_5

Download citation

Publish with us

Policies and ethics