Skip to main content

Model Predictive Control of Rigid-Airfoil Airborne Wind Energy Systems

  • Chapter
  • First Online:
Airborne Wind Energy

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In order to allow for a reliable and lasting operation of Airborne Wind Energy systems, several problems need to be addressed. One of the most important challenges regards the control of the tethered airfoil during power generation. Tethered flight of rigid airfoils is a fast, strongly nonlinear, unstable and constrained process, and one promising way to address the control challenge is the use of Nonlinear Model Predictive Control (NMPC) together with online parameter and state estimation based on Moving Horizon Estimation (MHE). In this paper, these techniques are introduced and their performance demonstrated in simulations of a 30 m wingspan tethered airplane with power generation in pumping mode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burton, T., Sharpe, D., Jenkins, N., Bossanyi, E.:Wind Energy Handbook. John Wiley & Sons, Ltd, Chichester (2001). doi: 10.1002/0470846062

  2. Canale, M., Fagiano, L., Milanese, M.: High Altitude Wind Energy Generation Using Controlled Power Kites. IEEE Transactions on Control Systems Technology 18(2), 279–293 (2010). doi: 10.1109/TCST.2009.2017933

  3. Daum, F.: Nonlinear Filters: Beyond the Kalman Filter. IEEE Aerospace and Electronic Systems Magazine 20(8), 57–69 (2005). doi: 10.1109/MAES.2005.1499276

  4. Diehl, M., Bock, H., Schl¨oder, J.: A real-time iteration scheme for nonlinear optimization in optimal feedback control. SIAM Journal on Control and Optimization 43(5), 1714–1736 (2005). doi: 10.1137/S0363012902400713

    Google Scholar 

  5. Diehl, M., Bock, H., Schl¨oder, J., Findeisen, R., Nagy, Z., Allg¨ower, F.: Real-time optimization and Nonlinear Model Predictive Control of Processes governed by differential-algebraic equations. Journal of Process Control 12(4), 577–585 (2002). doi: 10.1016/S0959-1524(01)00023-3

    Google Scholar 

  6. Diehl, M., Magni, L., Nicolao, G. D.: Efficient NMPC of unstable periodic systems using approximate infinite horizon closed loop costing. Annual Reviews in Control 28(1), 37–45 (2004). doi: 10.1016/j.arcontrol.2004.01.011.

  7. Ferreau, H. J.: Model predictive control algorithms for applications with millisecond timescales. Ph.D. Thesis, KU Leuven, 2011. https://lirias.kuleuven.be/bitstream/123456789/312147/1/phd ferreau.pdf

  8. Ferreau, H. J., Bock, H. G., Diehl, M.: An online active set strategy to overcome the limitations of explicit MPC. International Journal of Robust and Nonlinear Control 18(8), 816–830 (2008). doi: 10.1002/rnc.1251

    Google Scholar 

  9. Ferreau, H. J., Kraus, T., Vukov, M., Saeys,W., Diehl, M.: High-speed moving horizon estimation based on automatic code generation. In: Proceedings of the 51st IEEE Annual Conference on Decision and Control, pp. 687–692, Maui, HI, USA, 10–13 Dec 2012. doi: 10.1109/CDC. 2012.6426428

  10. Gros, S., Zanon, M., Diehl, M.: Control of AirborneWind Energy Systems Based on Nonlinear Model Predictive Control & Moving Horizon Estimation. In: Proceedings of the European Control Conference (ECC13), Zurich, Switzerland, 17–19 July 2013

    Google Scholar 

  11. Gros, S., Zanon, M., Diehl, M.: Orbit Control for a Power Generating Airfoil Based on Non- linear MPC. In: Proceedings of the 2012 American Control Conference, pp. 137–142, Montr´eal, Canada, 27–29 June 2012. http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber = 6315367

  12. Gros, S., Zanon, M., Vukov, M., Diehl, M.: Nonlinear MPC and MHE for Mechanical Multi-Body Systems with Application to Fast Tethered Airplanes. In: Proceedings of the 4th IFAC Nonlinear Model Predictive Control Conference, pp. 86–93, Leeuwenhorst, Netherlands, 23–27 Aug 2012. doi: 10.3182/20120823-5-NL-3013.00061

  13. Gr¨une, L.: NMPC Without Terminal Constraints. In: Proceedings of the IFAC Conference on Nonlinear Model Predictive Control, pp. 1–13, Leeuwenhorst, Netherlands, 23–27 Aug 2012. doi: 10.3182/20120823-5-NL-3013.00030

  14. Houska, B., Ferreau, H., Diehl, M.: An Auto-Generated Real-Time Iteration Algorithm for Nonlinear MPC in the Microsecond Range. Automatica 47(10), 2279–2285 (2011). doi: 10.1016/j.automatica.2011.08.020

  15. Houska, B., Diehl, M.: Optimal control of towing kites. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2693–2697, San Diego, CA, USA, 13–15 Dec 2006. doi: 10.1109/CDC.2006.377210

  16. Ilzh¨ofer, A., Houska, B., Diehl, M.: Nonlinear MPC of kites under varying wind conditions for a new class of large-scale wind power generators. International Journal of Robust and Nonlinear Control 17(17), 1590–1599 (2007). doi: 10.1002/rnc.1210

  17. K¨uhl, P., Diehl, M., Kraus, T., Schl¨oder, J., Bock, H.: A real-time algorithm for moving horizon state and parameter estimation. Computers & Chemical Engineering 35(1), 71–83 (2011). doi: 10.1016/j.compchemeng.2010.07.012.

  18. Leineweber, D. B., Bauer, I., Bock, H. G., Schl¨oder, J. P.: An Efficient Multiple Shooting Based Reduced SQP Strategy for Large-Scale Dynamic Process Optimization. Part 1: theoretical aspects. Computers & Chemical Engineering 27(2), 157–166 (2003). doi: 10.1016/S0098-1354(02)00158-8

  19. Leineweber, D. B., Sch¨afer, A., Bock, H. G., Schl¨oder, J. P.: An Efficient Multiple Shooting Based Reduced SQP Strategy for Large-Scale Dynamic Process Optimization: Part II: Soft ware aspects and applications. Computers & Chemical Engineering 27(2), 167–174 (2003). doi: 10.1016/S0098-1354(02)00195-3

  20. Manwell, J. F., McGowan, J. G., Rogers, A. L.: Wind Energy Explained: Theory, Design and Application. 2nd ed. John Wiley & Sons, Ltd., Chichester (2009). doi: 10.1002/9781119994367

  21. Mayne, D., Rawlings, J., Rao, C., Scokaert, P.: Constrained model predictive control, stability and optimality. Automatica 26(6), 789–814 (2000). doi: 10.1016/S0005-1098(99)00214-9

    Google Scholar 

  22. Quirynen, R.: Automatic code generation of Implicit Runge-Kutta integrators with continuous output for fast embedded optimization. M.Sc.Thesis, KU Leuven, 2012. ftp://ftp.esat.kuleuven.be/pub/SISTA/ida/reports/13-29.pdf

    Google Scholar 

  23. Quirynen, R., Vukov, M., Diehl, M.: Auto Generation of Implicit Integrators for Embedded NMPC with Microsecond Sampling Times. In: Proceedings of the 4th IFAC Nonlinear Model Predictive Control Conference, pp. 175–180, Leeuwenhorst, Netherlands, 23–27 Aug 2012. doi: 10.3182/20120823-5-NL-3013.00013

  24. Rao, C. V.: Moving Horizon Estimation of Constrained and Nonlinear Systems. Ph.D. Thesis, University of Wisconsin–Madison, 2000. http://jbrwww.che.wisc.edu/theses/rao.ps%E2%80%8E

  25. Rawlings, J., Bakshi, B.: Particle filtering and moving horizon estimation. Computers and Chemical Engineering 30(10–12), 1529–1541 (2006). doi: 10.1016/j.compchemeng.2006.05.031

Download references

Acknowledgments

This research was supported by Research Council KUL: PFV/10/002 Optimization in Engineering Center OPTEC, GOA/10/09 MaNet and GOA/10/11 Global real-time optimal control of autonomous robots and mechatronic systems. Flemish Government: IOF/KP/SCORES4CHEM, FWO: PhD/postdoc grants and projects: G.0320.08 (convex MPC), G.0377.09 (Mechatronics MPC); IWT: PhD Grants, projects: SBO LeCoPro; Belgian Federal Science Policy Office: IUAP P7 (DYSCO, Dynamical systems, control and optimization, 2012-2017); EU: FP7-EMBOCON (ICT-248940), FP7-SADCO (MC ITN-264735), ERC ST HIGHWIND (259 166), Eurostars SMART, ACCM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Zanon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zanon, M., Gros, S., Diehl, M. (2013). Model Predictive Control of Rigid-Airfoil Airborne Wind Energy Systems. In: Ahrens, U., Diehl, M., Schmehl, R. (eds) Airborne Wind Energy. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39965-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39965-7_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39964-0

  • Online ISBN: 978-3-642-39965-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics