Skip to main content

Photodynamic Control of Malaria Vector, Noxious Insects and Parasites

  • Chapter
  • First Online:
  • 2279 Accesses

Abstract

It is well documented that PDT has become a major approach for diagnosis and treatment of cancer. However, PDT was early discovered as a photodynamic antimicrobial chemotherapy and it has recently received considerable attention from researchers due to the fact that it has shown promise in the treatment of various tropical pathogens. In addition, PDT has been utilized successfully in recent years as a novel modality for noxious insects and parasite control, which is the subject of this chapter. The different classes of noxious insects, namely the activity of medical insects of vector borne- diseases such as Malaria, Filaria, and Dengue fever and agro-insects and pests which cause considerable damage to agro-economics, will be discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdel-Kader MH, El-Tayeb TA (2009) Field application for malaria vector control using sunlight active formulated extract. Patent No. WO 2009/149720 A1, Patent Cooperation Treaty (PCT), Austria

    Google Scholar 

  2. Graham K (1963) Concepts of forest entomology. Reinhold Publishing Corp., New York. p 256

    Google Scholar 

  3. Pimprikar GD, Georghiou GP (1979) Mechanisms of resistance to diflubenzuron in the housefly Musca domestica (L.). Pestic Biochem Physiol 12:10–22

    Article  CAS  Google Scholar 

  4. Carpenter TL, Heitz, JR (1980) Light-dependent latent toxicity of rose bengal to Culex pipiens quinquefasciatus. Environmental Entomology 9:533–537

    Google Scholar 

  5. Pimprikar GD, Fondern JE, Heitz JR (1980) Small-and large-scale field tests of erythrosin B for housefly control in caged layer chicken houses. Environ Entomol 9:53–58

    CAS  Google Scholar 

  6. Yoho TP, Butler L, Weaver JE (1976) Photodynamic killing of house flies fed food, drug, and cosmetic dye additives. Environ Entomol 5:203–204

    CAS  Google Scholar 

  7. Lionel RM (1997) The Color of Life. Oxford University Press Inc, Oxford, pp 3–5

    Google Scholar 

  8. Bensasson RV, Jori G, Land EJ, Truscott TG (eds) (1985) Primary Photoprocesses in Biology and Medicine. Plenum Press, New York, pp 349–355

    Google Scholar 

  9. Jori G (1996) Tumor photosensitizers: approaches to enhance the selectivity and efficiency of photodynamic therapy. J Photochem Photobiol B: Biol 36:87–93

    Article  CAS  Google Scholar 

  10. Ben Amor T, Tronchin M, Bortolotto L , Verdiglione R, Jori G (1998) Porphyrin and related compounds as photoactivatable insecticides. I. Phototoxic activity of hematoporphyrin toward Ceratitis capitata and Bactrocera oleae. Photochem Photobio 67:206–211

    Google Scholar 

  11. Rebeiz CA, Juvik JA, Rebeiz CC (1988) Porphyric insecticides: concept and phenomenology. Pestic Biochem Physiol 30:11–27

    Article  CAS  Google Scholar 

  12. Abdel-Kader MH, El-Sherbini SA, El-Tayeb TA, Jori G, Ben-Amor T (2006) Using environmentally friendly and solar activated compounds for control of Musca domestica. Patent No. 23571. Egyptian Patent office (EPO), Academy of Scientific Research and Technology, Ministry of High Education & Research, Egypt

    Google Scholar 

  13. Abdel-Kader MH, El-Sherbini SA, El-Tayeb TA, Mandour OS (2005) Photosenstizers for control of Schistosoma hematobium and Schistosoma Mansoni Cercaria and eggs. Patent No. 23397 (2005). Egyptian Patent office (EPO), Egypt

    Google Scholar 

  14. Abdel-kader MH, El-Sherbini SA, Balal MH, El-Tayeb TA, Ayoub S, El-Feky SA (2005) Using sunlight and the derivatives of porphyrine and phthalocyanine to control the stages of whitefly (Bemisia tabaci). Patent No. 23385, Egyptian Patent office (EPO), Egypt

    Google Scholar 

  15. Abdel-Kader MH, Giulio J, El-Sherbini SA, El-Tayeb TA (2008) Using Environmentally friendly and solar activated compounds for control of Culex pipiens larvae (Mosquito). Patent No. 34113 (2008), Egyptian Patent office (EPO), Egypt

    Google Scholar 

  16. Abdel-kader MH, El Sherbini SA, El-Tayeb TA, Hassan E, El-Emam M, El-Taraky A (2008) Using Photo-oxidation reactions by photosensitizer for control of Schistosomes snail vector. Patent No. 23969, Egyptian Patent office (EPO), Egypt

    Google Scholar 

  17. Fradin MS (1998) Mosquitoes and mosquito repellents. Ann Internal Med 128:931–940

    Article  CAS  Google Scholar 

  18. Crosby MC (2007) The American Plague: the untold story of yellow fever, the epidemic that shaped our history. Berkley Books, New York

    Google Scholar 

  19. McCullough DG (1978) The path between the seas: the creation of the Panama Canal 1870–1914. Simon and Schuster, New York, p 289

    Google Scholar 

  20. World Health Organization (2006) Indoor residual spraying: Use of indoor residual spraying for scaling up global malaria control and elimination. Geneva, Switzerland

    Google Scholar 

  21. Weber R, Watson A, Forter M, Oliaei F (2011) Review article: persistent organic pollutants and landfills-a review of past experiences and future challenges. Waste Manage Res 29:107–121

    Article  CAS  Google Scholar 

  22. Beard J (2006) DDT and human health. Sci Total Environ 355:78–89

    Article  CAS  Google Scholar 

  23. World Health Organization (2011) WHO position statement. The use of DDT in malaria vector control

    Google Scholar 

  24. Awad HH, El-Tayeb TA, Abd El-Aziz NM and Abde-Kader MH. (2008) A semi-field Study on the effect of novel hematoporphyrin formula on the control of Culex Pipens Larvea. J. Agri. Soc. Sci., 4:85–88

    Google Scholar 

  25. Lucantoni L, Magaraggia M, Lupidi G, Ouedraogo R, Coppellotti O, Esposito F, Fabris C, Jori G, Habluetzel A (2011) Novel, Meso-substituted cationic porphyrin molecule for photo-mediated larval control of the dengue vector Aedes aegypti. PLoS Negl Trop 5(12)

    Google Scholar 

  26. Fabris C, Ouédraogo RK, Coppellotti O, Dabiré RK, Diabaté A, Di Martino P, Guidolin L, Jori G, Lucantoni L, Lupidi G, Martena V, Sawadogo SP, Soncin M, Habluetzel A (2012) Efficacy of sunlight-activatable porphyrin formulates on larvae of Anopheles gambiae M and S molecular forms and An. arabiensis: A potential novel biolarvicide for integrated malaria vector control. Acta tropica 123:239–243

    Google Scholar 

  27. U.S. Food and Drug Administration (2002) Federal Register. Listing of Color Additives Exempt From Certification; Sodium Copper Chlorophyllin 67(97):35429–35431

    Google Scholar 

  28. West LS (1951) The housefly: its natural history, medical importance, and control, 1st edn. Comstock Publishing Company

    Google Scholar 

  29. Dent D (2000) Insect pest management, 2nd edn. CABI

    Google Scholar 

  30. Deken de R, van Loon M (1989) The presence of knock down resistance in houseflies on Belgian farms following the use of long-acting pyrethroids and its implication on housefly control. Vlaams-Diergeneeskundig-Tijdschrift 58:200–203

    Google Scholar 

  31. Hafez JA (1992) Evaluation of insecticidal efficiency of certain new selective formulations against Musca domestica. J Egypt Soc Parasitol 22:839–849

    CAS  Google Scholar 

  32. Hodgman TC, Ziniu Y, Ming S, Sawyer T, Nicholls CM, Ellar DJ (1993) Characterization of a Bacillus thuringiensis strain which is toxic to the housefly Musca domestica. FEMS Microbiol Lett 114:17–22

    Article  CAS  Google Scholar 

  33. Glofcheskie BD, Surgeoner GA (1993) Efficacy of Muscovy ducks as an adjunct for housefly (Diptera Muscidae) control in swine and dairy operations. J Econ Entomol 86:1686–1692

    Google Scholar 

  34. Watson DW, Geden CJ, Long SJ, Rutz DA (1995) Efficacy of Beauveria bassiana for controlling the housefly and stable fly (Diptera Muscidae). Biol Control 5:405–411

    Article  Google Scholar 

  35. Kuramoto H, Shimazu M (1997) Control of house fly populations by Entomophthora muscae (Zygomycotina Entomophthorales) in a poultry house. Appl Entomol Zool 32:325–331

    Google Scholar 

  36. King BH (1997) Effects of age and burial of housefly (Diptera Muscidae) pupae on parasitism by Spalangia cameroni and Muscidifurax raptor (Hymenoptera Pteromalidae). Environ Entomol 26:410–415

    Google Scholar 

  37. Yoho TP, Butler L, Weaver JE (1971) Photodynamic effects of light on dye-fed house flies: preliminary observations of mortality. J Econ Entomol 64:972–973

    Google Scholar 

  38. Yoho TP, Butler L, Weaver JE (1971) Photodynamic action in insects: levels of mortality in dye-fed light-exposed house flies. Environ Entomol 2:1092–1096

    Google Scholar 

  39. Pimprikar GD, Noe BL, Norment BR, Hetiz JR (1980) Ovicidal, larvicidal and biotic effects of xanthene derivatives in the house fly Musca domestica. Environ Entomol 9:785–788

    CAS  Google Scholar 

  40. Respicio NC, Heitz JR (1986) Cross resistance of erythrosine B-resistant house flies to different pesticides. Econ Entomol 79:315–317

    CAS  Google Scholar 

  41. Eltayeb TA (1999) The use of photo-activated pesticide for control of Culex pipiens (Diptera: Culicidae) and Musca domestica (Diptera: Muscidae). MSc Thesis, Cairo University, Egypt

    Google Scholar 

  42. Robinson JR, Beatson EP (1985) Effect of selected antioxidants on the phototoxicity of erythrosin B toward house fly larvae. Pestic Biochem Physio 24:375–383

    Article  CAS  Google Scholar 

  43. Akbar W, Abdul Khaliq AM (2000) Rating of some early maturing soybean varieties for whitefly responses and its population trends in autumn and spring seasons. Int J Agric Biol 2:99–103

    Google Scholar 

  44. Ishaaya I, Kontsedalov S (2005) Biorational insecticides: mechanism and cross-resistance. Arch Insect Biochem Physiol 58:192–199

    Article  CAS  Google Scholar 

  45. Ghosh S, Laskar N, Basak S, Senapati S (2004) Seasonal fluctuation of Bemisia tabaci Genn. on brinjal and field evaluation of some pesticides against Bemisia tabaci under terai region of West Bengal. Environ Ecol 22:758–762

    CAS  Google Scholar 

  46. Abdel-Kader M., El-Tayeb T, El-Sherbini E, El-Feky S (2008) Environmentally-friendly Photosensitizers to control Bemisia tabaci, Gennadius (Homoptera: Aleyrodidae). Eg Bull Ent Soc Egypt 34:49–60

    Google Scholar 

  47. Lardans V, Dissous C (1998) Snail control strategies for reduction of schistosomiasis transmission. Parasitology Today 14:413–417

    Article  CAS  Google Scholar 

  48. World Health Organization (1997) Schistosomiasis. Aide Memoire 115:1–4

    Google Scholar 

  49. Wu GY, Halim MH (2000) Schistosomiasis: progress and problems. World J Gastroenterol 6:12–19

    Google Scholar 

  50. World Health Organization (1980) Epidemiology and control of schistosomiasis. WHO Tech Rep Seri 843:3–63

    Google Scholar 

  51. World Health Organization (1993) The control of schistosomiasis. WHO Tech Rep Seri 830:1–85

    Google Scholar 

  52. Hasan TI (2003) Photosensitization processes induced by Laser and incoherent light to control Shistosoma worms. MS Thesis. (N.I.L.E.S), Cairo University, Cairo, Egypt. Print

    Google Scholar 

  53. Moema EB, King PH, Baker C (2008) Cercariae developing in Lymnaea natalensis Krauss, 1848 collected in the vicinity of Pretoria, Gauteng Province, South Africa. Onderstepoort J Vet Res 75:215–223

    Google Scholar 

  54. Ai L, Chen M, Alasaad S, Elsheikha HM, Li J, Li H, Lin R, Zou F, Zhu X, Chen J (2011) Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches. Parasites and vectors 4:101

    Google Scholar 

  55. El-Tayeb T (2003) Laser scanning microscopy for determination of the efficiency of hematoporphyrin in control of Culex Pipiens larvae and the snail vector of Fasciola Gigantica. PhD thesis, National Institute of Laser Enhanced Sciences (NILES), Cairo University

    Google Scholar 

  56. Soltan ME, Awadallah RM (1994) Chemical survey on the river Nile water from Aswan into the outlet. National conference on river Nile, Assiut University, Center for Environmental Studies (AUCES), 157–168

    Google Scholar 

  57. Grosso VN, Previtali CM, Chesta CA (1998) Salt-induced charge separation in photoinduced electron transfer reactions. The effect of ion size. Photochem Photobiol 68:481–486

    Article  CAS  Google Scholar 

  58. Suslick KS, Watson RA (1992) The photochemistry of chromium, manganese, and iron porphyrin complexes. New J Chem 16:633–642

    CAS  Google Scholar 

Download references

Acknowledgments

We hereby acknowledge the following colleagues and postgraduate students for their contributions to this chapter:

Prof. Dr. El-Sayed El-Sherbini, Dr. Souad El-Feky, Dr. Abdel-Hakim El-Tarky, and Omima Mandour.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud H. Abdel-Kader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abdel-Kader, M.H., Eltayeb, T.A. (2014). Photodynamic Control of Malaria Vector, Noxious Insects and Parasites. In: Abdel-Kader, M. (eds) Photodynamic Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39629-8_13

Download citation

Publish with us

Policies and ethics