Skip to main content

Computation and Visualization of Musical Structures in Chord-Based Simplicial Complexes

  • Conference paper
Book cover Mathematics and Computation in Music (MCM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7937))

Included in the following conference series:

Abstract

We represent chord collections by simplicial complexes. A temporal organization of the chords corresponds to a path in the complex. A set of n-note chords equivalent up to transposition and inversion is represented by a complex related by its 1-skeleton to a generalized Tonnetz. Complexes are computed with MGS, a spatial computing language, and analyzed and visualized in Hexachord, a computer-aided music analysis environment. We introduce the notion of compliance, a measure of the ability of a chord-based simplicial complex to represent a musical object compactly. Some examples illustrate the use of this notion to characterize musical pieces and styles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chew, E.: The Spiral Array: An Algorithm for Determining Key Boundaries. In: Anagnostopoulou, C., Ferrand, M., Smaill, A. (eds.) ICMAI 2002. LNCS (LNAI), vol. 2445, pp. 18–31. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Cohn, R.: Neo-Riemannian Operations, Parsimonious Trichords, and their “Tonnetz” Representations. Journal of Music Theory 41(1), 1–66 (1997)

    Article  Google Scholar 

  3. Callender, C., Quinn, I., Tymoczko, D.: Generalized Voice-Leading Spaces. Science 320(5874), 346 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Tymoczko, D.: The Geometry of Musical Chords. Science 313(5783), 72 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Giavitto, J.L., Michel, O.: MGS: a Rule-Based Programming Language for Complex Objects and Collections. In: van den Brand, M., Verma, R. (eds.) Electronic Notes in Theoretical Computer Science, vol. 59. Elsevier, Amsterdam (2001)

    Google Scholar 

  6. Giavitto, J.L.: Topological Collections, Transformations and their Application to the Modeling and the Simulation of Dynamical Systems. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 208–233. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Munkres, J.: Elements of Algebraic Topology. Addison-Wesley (1984)

    Google Scholar 

  8. Spicher, A., Michel, O., Giavitto, J.-L.: Declarative Mesh Subdivision Using Topological Rewriting in mgs. In: Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 298–313. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Giavitto, J.L., Spicher, A.: Simulation Of Self-Assembly Processes Using Abstract Reduction Systems. In: Krasnogor, N., Gustafson, S., Pelta, D.A., Verdegay, J.L. (eds.) Systems Self-Assembly: Multidisciplinary Snapshots, pp. 199–223. Elsevier, Amsterdam (2008)

    Chapter  Google Scholar 

  10. Bigo, L., Giavitto, J., Spicher, A.: Building topological spaces for musical objects. In: Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J. (eds.) MCM 2011. LNCS, vol. 6726, pp. 13–28. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Mazzola, G., et al.: The Topos of Music: Geometric Logic of Concepts. In: Theory, and Performance. Birkhäuser (2002)

    Google Scholar 

  12. Morris, R.: Composition with Pitch Classes: a Theory of Compositional Design. Yale University Press, New Haven (1987)

    Google Scholar 

  13. Estrada, J.: La teoría d1, MúSIIC-Win y algunas aplicaciones al análisis musical: Seis piezas para piano, de Arnold Schoenberg. In: Lluis-Puebla, E., Agustín-Aquinas, O. (eds.) Memoirs of the Fourth International Seminar on Mathematical Music Theory, Huatulco (2011)

    Google Scholar 

  14. Andreatta, M., Agon, C.: Implementing Algebraic Methods in openmusic. In: Proceedings of the International Computer Music Conference, Singapore (2003)

    Google Scholar 

  15. Catanzaro, M.: Generalized Tonnetze. Journal of Mathematics and Music 5(2), 117–139 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gollin, E.: Some Aspects of Three-Dimensional “Tonnetze”. Journal of Music Theory 42(2), 195–206 (1998)

    Article  Google Scholar 

  17. Albini, G., Antonini, S.: Hamiltonian Cycles in the Topological Dual of the Tonnetz. In: Chew, E., Childs, A., Chuan, C.-H. (eds.) MCM 2009. CCIS, vol. 38, pp. 1–10. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bigo, L., Andreatta, M., Giavitto, JL., Michel, O., Spicher, A. (2013). Computation and Visualization of Musical Structures in Chord-Based Simplicial Complexes. In: Yust, J., Wild, J., Burgoyne, J.A. (eds) Mathematics and Computation in Music. MCM 2013. Lecture Notes in Computer Science(), vol 7937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39357-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39357-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39356-3

  • Online ISBN: 978-3-642-39357-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics