Skip to main content

Surface-Based Electrophysiology Modeling and Assessment of Physiological Simulations in Atria

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7945))

Abstract

The objective of this paper is to assess a previously-proposed surface-based electrophysiology model with detailed atrial simulations. This model – derived and substantiated by mathematical arguments – is specifically designed to address thin structures such as atria, and to take into account strong anisotropy effects related to fiber directions with possibly rapid variations across the wall thickness. The simulation results are in excellent adequacy with previous studies, and confirm the importance of anisotropy effects and variations thereof. Furthermore, this surface-based model provides dramatic computational benefits over 3D models with preserved accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chapelle, D., Collin, A., Gerbeau, J.-F.: A surface-based electrophysiology model relying on asymptotic analysis and motivated by cardiac atria modeling. In: M3AS (2012) (in press), http://hal.inria.fr/hal-00723691/en

  2. Cohen, G.I., White, M., Sochowski, R.A., Klein, A.Z., Bridge, P.D., Steward, W.J., Chang, K.L.: Reference values for normal adult transesophageal echocardiographic measurements. Journal of the American Society of Echocardiography (8), 221–230 (1995)

    Google Scholar 

  3. Courtemanche, M., Ramirez, R.J., Nattel, S.: Modeling atrial fiber orientation in patient-specific geometries: A semi-automatic rule-based approach. American Journal of Physiology (275), H301–H321 (1998)

    Google Scholar 

  4. Deng, D., Gong, Y., Shou, G., Jiao, P.: Simulation of biatrial conduction via different pathways during sinus rhythm with a detailed human atrial model. Journal of Zheijiang University-SCIENCE B (Biomedicine and Biotechnology), 1862–1783 (2012)

    Google Scholar 

  5. Frey, P.: Yams: A fully automatic adaptive isotropic surface remeshing procedure. Technical report 0252, Inria, Rocquencourt, France (November 2001)

    Google Scholar 

  6. Harrild, D.M., Craig, S.H.: A computer model of normal conduction in the human atria. Circulation Research (87), e25–e36 (2000)

    Google Scholar 

  7. Ho, S.Y., Anderson, R.H., Sánchez-Quintana, D.: Atrial structure and fibres: morphologic bases of atrial conduction. Cardiovascular Research (54), 325–336 (2002)

    Google Scholar 

  8. Jiamsripong, P., Honda, T., Reuss, C.S., Hurst, R.T., Chaliki, H.P., Grill, D.E., Schneck, S.L., Tyler, R., Khandheria, B.K., Lester, S.J.: Three methods for evaluation of left atrial volume. European Journal of Echocardiography (9), 351–355 (2008)

    Google Scholar 

  9. Krueger, M.W., et al.: Modeling atrial fiber orientation in patient-specific geometries: A semi-automatic rule-based approach. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 223–232. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Matsuo, S., et al.: Clinical predictors of termination and clinical outcome of catheter ablation for persistent atrial fibrillation. Journal of the American College of Cardiology 54(9), 788–795 (2009)

    Article  MathSciNet  Google Scholar 

  11. Pullan, A.J., Buist, M.L., Cheng, L.K.: Mathematically Modeling the Electrical Activity of the Heart. World Scientific (2005)

    Google Scholar 

  12. Sachse, F.B.: Computational Cardiology: Modeling of Anatomy, Electrophysiology and Mechanics. Springer (2004)

    Google Scholar 

  13. Sundnes, J., Lines, G.T., Cai, X., Nielsen, B.F., Mardal, K.A., Tveito, A.: Computing the Electrical Activity in the Heart. Monographs in Computational Science and Engineering, vol. 1. Springer (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Collin, A., Gerbeau, JF., Hocini, M., Haïssaguerre, M., Chapelle, D. (2013). Surface-Based Electrophysiology Modeling and Assessment of Physiological Simulations in Atria. In: Ourselin, S., Rueckert, D., Smith, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2013. Lecture Notes in Computer Science, vol 7945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38899-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38899-6_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38898-9

  • Online ISBN: 978-3-642-38899-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics