Skip to main content

Affine SIFT Based on Particle Swarm Optimization

  • Chapter
  • First Online:
Fuzzy Information & Engineering and Operations Research & Management

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 211))

  • 1333 Accesses

Abstract

As for ASIFT, ASIFT has been proven to be invariant to image scaling and rotation. Specially, ASIFT enables matching of images with severe view point change and outperforms significantly the state-of-the-art methods. It accomplished this by simulating several views of the original images. However, we found that the simulated parameters are continuous, namely, transformations acquired by ASIFT cant express the real relationship between reference and input images. Therefore, a particle swarm optimization based sample strategy is presented in this paper. The basic idea is to search the best transform in continuous parameter space. Experimental results show that the proposed PSO-ASIFT algorithm could get more matches compared with the original ASIFT and SIFT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Wong, D. A. Clausi.: ARRSI: Automatic registration of remote-sensing images. IEEE Transaction on Geoscience and Remote Sensing 45(5): 1483–1493 (2007).

    Google Scholar 

  2. B. Zitova’ and J. Flusser.: Image registration methods: a survey. Image and Vision Computing 21: 977–1000 (2003).

    Google Scholar 

  3. C. Harris and M. Stephens.: A combined corner and edge detector. Alvey Vision Conference: 15–50 (1988).

    Google Scholar 

  4. K. Mikolajczyk and C. Schmid.: Scale and Affine Invariant Interest Point Detectors. International Journal of Computer Vision 60(1): 63–86 (2004).

    Google Scholar 

  5. K. Mikolajczyk and C. Schmid.: An affine invariant interest point detector. Proc. ECCV 1: 128–142 (2002).

    Google Scholar 

  6. J. Matas, O. Chum, M. Urban, and T. Pajdla.: Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing 22(10): 761–767 (2004).

    Google Scholar 

  7. D. G. Lowe.: Distinctive image features from scale-invariant key points. International Journal of Computer Vision 60(2): 91–110 (2004).

    Google Scholar 

  8. K. Mikolajczyk and C. Schmid.: A performance Evaluation of Local Descriptors. IEEE Trans. PAMI 27(10): 1615–2005 (2005).

    Google Scholar 

  9. S. Belongie, J. Malik, and J. Puzicha.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (24): 509–522 (2002).

    Google Scholar 

  10. A. Baumberg.: Reliable feature matching across widely separated views. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition 1: 774–781 (2000).

    Google Scholar 

  11. L. J. V. Gool, T. Moons, and D. Ungureanu.: Affine/Photometric Invariants for Planar Intensity Patterns. Proceedings of the 4th European Conference on Computer Vision 1: 642–651 (1996).

    Google Scholar 

  12. Ke, Y.: R. Sukthankar.: PCA-SIFT: A more distinctive representation for local image descriptors. Proc. of the IEEE Conf. on Computer Vision and. Pattern Recognition 2, 506–51 (2004)

    Google Scholar 

  13. K. Mikolajczyk and C. Schmid.: A Performance Evaluation of Local Descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (10): 1615–1630 (2005).

    Google Scholar 

  14. H. Bay, T. Tuytelaars, and L. Van Gool.: Surf: Speeded up robust features. European Conference on Computer Vision 1: 404–417 (2006).

    Google Scholar 

  15. J. M. Morel and G. Yu.: ASIFT: A New Framework for Fully Affine Invariant Image Comparison. SIAM Journal on Imaging Sciences 2(2): 438–469 (2009).

    Google Scholar 

  16. J. L. Bentley.: Multidimensional binary search trees used for associative searching. Communications of the ACM 18(9): 509–517 (1975).

    Google Scholar 

  17. Kennedy and Eberhart RC.: Particle Swarm Optimization. Proceeding of IEEE International Conference on Neural Networks. Piscataway, NJ: IEEE service center: 1942–1948 (1995).

    Google Scholar 

  18. B. Y. You, G. L. Chen, and W. Z. Guo.: Topology control in wireless sensor networks based on discrete particle swarm optimization. Proceeding of IEEE International Conference on Intelligent Computing and Intelligent Systems 11: 269–273 (2009).

    Google Scholar 

Download references

Acknowledgments

The work was supported by Natural Science Foundation of Fujian Province of China (No.2011J01013), and Special Fund of Science, Technology of Fujian Provincial University of China (JK2010013) and Fund of Science, Technology of Xiamen (No. 3502Z20123022). Corresponding author: Professor Shui-li Chen

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shui-li Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cao, Xl., Cai, GR., Chen, Sl. (2014). Affine SIFT Based on Particle Swarm Optimization. In: Cao, BY., Nasseri, H. (eds) Fuzzy Information & Engineering and Operations Research & Management. Advances in Intelligent Systems and Computing, vol 211. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38667-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38667-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38666-4

  • Online ISBN: 978-3-642-38667-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics