Skip to main content

Why Is the Census Transform Good for Robust Optic Flow Computation?

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7893))

Abstract

The census transform is becoming increasingly popular in the context of optic flow computation in image sequences. Since it is invariant under monotonically increasing grey value transformations, it forms the basis of an illumination-robust constancy assumption. However, its underlying mathematical concepts have not been studied so far. The goal of our paper is to provide this missing theoretical foundation. We study the continuous limit of the inherently discrete census transform and embed it into a variational setting. Our analysis shows two surprising results: The census-based technique enforces matchings of extrema, and it induces an anisotropy in the data term by acting along level lines. Last but not least, we establish links to the widely-used gradient constancy assumption and present experiments that confirm our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 151–158. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  2. Stein, F.: Efficient computation of optical flow using the census transform. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 79–86. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Müller, T., Rannacher, J., Rabe, C., Franke, U.: Feature- and depth-supported modified total variation optical flow for 3D motion field estimation in real scenes. In: Proc. 24th IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, pp. 1193–1200. IEEE Computer Society Press (2011)

    Google Scholar 

  4. Mohamed, M.A., Mertsching, B.: TV-L1 optical flow estimation with image details recovering based on modified census transform. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Fowlkes, C., Wang, S., Choi, M.-H., Mantler, S., Schulze, J., Acevedo, D., Mueller, K., Papka, M. (eds.) ISVC 2012, Part I. LNCS, vol. 7431, pp. 482–491. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Müller, T., Rabe, C., Rannacher, J., Franke, U., Mester, R.: Illumination-robust dense optical flow using census signatures. In: Mester, R., Felsberg, M. (eds.) DAGM 2011. LNCS, vol. 6835, pp. 236–245. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Ranftl, R., Gehrig, S., Pock, T., Bischof, H.: Pushing the limits of stereo using variational stereo estimation. In: IEEE Intelligent Vehicles Symposium, Alcala de Henares, pp. 401–407. IEEE Computer Society Press (2012)

    Google Scholar 

  7. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. International Journal of Computer Vision 92(1), 1–31 (2011)

    Article  Google Scholar 

  8. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 29(1), 51–59 (1996)

    Article  Google Scholar 

  9. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Uras, S., Girosi, F., Verri, A., Torre, V.: A computational approach to motion perception. Biological Cybernetics 60, 79–87 (1988)

    Article  Google Scholar 

  11. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mileva, Y., Bruhn, A., Weickert, J.: Illumination-robust variational optical flow with photometric invariants. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 152–162. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  15. Weickert, J.: Anisotropic diffusion filters for image processing based quality control. In: Fasano, A., Primicerio, M. (eds.) Proc. Seventh European Conference on Mathematics in Industry, pp. 355–362. Teubner, Stuttgart (1994)

    Google Scholar 

  16. Bruhn, A.: Variational Optic Flow Computation: Accurate Modelling and Efficient Numerics. PhD thesis, Dept. of Computer Science, Saarland University, Saarbrücken, Germany (2006)

    Google Scholar 

  17. Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, New York (1971)

    MATH  Google Scholar 

  18. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–77 (1994)

    Article  Google Scholar 

  19. Fröba, B., Ernst, A.: Face detection with the modified census transform. In: Proc. 6th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 91–96. IEEE Computer Society Press (2004)

    Google Scholar 

  20. Guichard, F., Morel, J.M.: Partial differential equations and image iterative filtering. In: Duff, I.S., Watson, G.A. (eds.) The State of the Art in Numerical Analysis. IMA Conference Series (New Series), vol. 63, pp. 525–562. Clarendon Press, Oxford (1997)

    Google Scholar 

  21. Welk, M., Breuß, M., Vogel, O.: Morphological amoebas are self-snakes. Journal of Mathematical Imaging and Vision 39(2), 87–99 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hafner, D., Demetz, O., Weickert, J. (2013). Why Is the Census Transform Good for Robust Optic Flow Computation?. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2013. Lecture Notes in Computer Science, vol 7893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38267-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38267-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38266-6

  • Online ISBN: 978-3-642-38267-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics