Skip to main content

A Multi-objective Optimization Energy Approach to Predict the Ligand Conformation in a Docking Process

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7831))

Abstract

This work proposes a multi-objective algorithmic method for modelling the prediction of the conformation and configuration of ligands in receptor-ligand complexes by considering energy contributions of molecular interactions. The proposed approach is an improvement over others in the field, where the principle insight is that a Pareto front helps to understand the tradeoffs in the actual problem. The method is based on three main features: (i) Representation of molecular data using a trigonometric model; (ii) Modelling of molecular interactions with all-atoms force field energy functions and (iii) Exploration of the conformational space through a multi-objective evolutionary algorithm. The performance of the proposed model was evaluated and validated over a set of well known complexes. The method showed a promising performance when predicting ligands with high number of rotatable bonds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding Knees in Multi-objective Optimization. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 722–731. Springer, Heidelberg (2004), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.76.9689

    Chapter  Google Scholar 

  2. Brooijmans, N., Kuntz, I.D.: Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct. 32, 335–373 (2003)

    Article  Google Scholar 

  3. Brünger, A.T., Leahy, D.J., Hynes, T.R., Fox, R.O.: The 2.9 Å resolution structure of an anti-dinitrophenyl-spin-label monoclonal antibody fab fragment with bound hapten. J. Mol. Biol. 221(1), 239–256 (1991)

    Google Scholar 

  4. Case, D., Darden, T., Cheatham Iii, T., Simmerling, C., Wang, J., Duke, R., Luo, R., Crowley, M., Walker, R., Zhang, W., et al.: Amber 10, vol. 32. University of California, San Francisco (2008)

    Google Scholar 

  5. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. JACS 117(19), 5179–5197 (1995), http://dx.doi.org/10.1021/ja00124a002

    Article  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Dehuri, S., Cho, S.B.: Multi-criterion pareto based particle swarm optimized polynomial neural network for classification: A review and state-of-the-art. Comp. Sci. Rev. 3(1), 19–40 (2009)

    Article  Google Scholar 

  8. Dong, Q., Wu, Z.: A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances. J. Global Opt. 22(1), 365–375 (2002), http://dx.doi.org/10.1023/A:1013857218127

    Article  MathSciNet  MATH  Google Scholar 

  9. Durillo, J., Nebro, A., Luna, F., Dorronsoro, B., Alba, E.: jmetal: a java framework for developing multi-objective optimization metaheuristics. Departamento de Lenguajes y Ciencias de la Computación, University of Málaga, ETSI Informática, Campus de Teatinos, Tech. Rep. ITI-2006-10 (2006)

    Google Scholar 

  10. Hanser, T., Jauffret, P., Kaufmann, G.: A new algorithm for exhaustive ring perception in a molecular graph. J. Chem. Inf. Comput. Sci. 36(6), 1146–1152 (1996)

    Article  Google Scholar 

  11. Ishida, M., Asakura, T., Yokoi, M., Saito, H.: Solvent-and mechanical-treatment-induced conformational transition of silk fibroins studies by high-resolution solid-state carbon-13 nmr spectroscopy. Macromolecules 23(1), 88–94 (1990)

    Article  Google Scholar 

  12. Jones, G., Willett, P., Glen, R.C., Leach, A.R., Taylor, R.: Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267(3), 727–748 (1997), http://view.ncbi.nlm.nih.gov/pubmed/9126849

    Article  Google Scholar 

  13. Kapetanovic, I.M.: Computer-aided drug discovery and development (caddd): in silico-chemico-biological approach. Chemico-Biological Interact. 171(2), 165–176 (2008)

    Article  MathSciNet  Google Scholar 

  14. Kramer, B., Rarey, M., Lengauer, T.: Evaluation of the FLEXX incremental construction algorithm for protein–ligand docking. Proteins 37(2), 228–241 (1999), http://dx.doi.org/10.1002/(SICI)1097-0134(19991101)37:2<228::AID-PROT8>3.0.CO;2-8

    Google Scholar 

  15. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R., Ferrin, T.E.: A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 161(2), 269–288 (1982)

    Article  Google Scholar 

  16. Lawson, C.L., Van Montfort, R., Strokopytov, B., Rozeboom, H., Kalk, K., de Vries, G., Penninga, D., Dijkhuizen, L., Dijkstra, B.W.: Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltose-dependent crystal form. J. Mol. Biol. 236(2), 590–600 (1994)

    Article  Google Scholar 

  17. Lepre, C.A., Moore, J.M., Peng, J.W.: Theory and applications of nmr-based screening in pharmaceutical research. Chem. Rev. 104(8), 3641–3676 (2004)

    Article  Google Scholar 

  18. Lodish, H., Baltimore, D., Berk, A., Darnell, J.: Molecular cell biology. WH Freeman, New York (1995)

    Google Scholar 

  19. Makino, S., Kuntz, I.D.: Automated flexible ligand docking method and its application for database search. J. Comp. Chem. 18(14), 1812–1825 (1997)

    Article  Google Scholar 

  20. Moustakas, D., Lang, P., Pegg, S., Pettersen, E., Kuntz, I.D., Brooijmans, N., Rizzo, R.: Development and validation of a modular, extensible docking program: DOCK5. J. Comput. Aided Mol. Des. 20, 601–619 (2006), http://dx.doi.org/10.1007/s10822-006-9060-4 , doi:10.1007/s10822-006-9060-4

    Article  Google Scholar 

  21. Nicolaou, C.A., Brown, N., Pattichis, C.S.: Molecular optimization using computational multi-objective methods. Curr. Opin. Drug Discov. Dev. 10(3), 316 (2007)

    Google Scholar 

  22. Quiocho, F.A., Vyas, N.K.: Novel stereospecificity of the l-arabinose-binding protein. Nature 310(5976), 381–386 (1984)

    Article  Google Scholar 

  23. Sams-Dodd, F.: Target-based drug discovery: is something wrong? Drug Discov. Today 10(2), 139–147 (2005)

    Article  Google Scholar 

  24. Stebbins, J., Robertson, D., Roberts, M., Stevens, R., Lipscomb, W., Kantrowitz, E.: Arginine 54 in the active site of Escherichia coli aspartate transcarbamoylase is critical for catalysis: A site-specific mutagenesis, nmr, and x-ray crystallographic study. Prot. Sci. 1(11), 1435–1446 (2008)

    Article  Google Scholar 

  25. Subasi, E., Basdogan, C.: A new haptic interaction and visualization approach for rigid molecular docking in virtual environments. Presence 17(1), 73–90 (2008)

    Article  Google Scholar 

  26. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of a general amber force field. J. Comp. Chem. 25(9), 1157–1174 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sandoval-Perez, A., Becerra, D., Vanegas, D., Restrepo-Montoya, D., Nino, F. (2013). A Multi-objective Optimization Energy Approach to Predict the Ligand Conformation in a Docking Process. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds) Genetic Programming. EuroGP 2013. Lecture Notes in Computer Science, vol 7831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37207-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37207-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37206-3

  • Online ISBN: 978-3-642-37207-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics