Skip to main content

Seismic and Gravity Structure of the Campi Flegrei Caldera, Italy

  • Chapter
  • First Online:
Campi Flegrei

Abstract

We present a comprehensive review of seismic and gravity observations and tomographic models produced over the past four decades in order to understand the structure of the crust beneath the Campi Flegrei caldera. We describe the main lithological and structural discontinuities defined through these observations, illustrate their geophysical responses, and discuss the constraints they give to the understanding of magmatic and volcanic processes. Micro-seismic crises related to caldera unrest, and ambient seismic noise measurements provide comprehensive seismic data to local earthquake and ambient noise tomography. In combination with reflection data from onshore and offshore active seismic experiments, velocity tomography reconstructs the elastic properties of the caldera between surface and ~4 km depth. Active experiments also define the depth of lithological interfaces and deep (~7.5 km) partially molten bodies. Seismic attenuation tomography provides information complementary to velocity tomography, defining lateral lithological changes and the geometry of onshore and offshore fluid and magma bodies down to 4 km depth. Once compared with seismic analyses, gravity data highlight lateral changes in the offshore caldera structures. During the deformation and seismo-geochemical unrest (1982–1984), they permitted to reconstruct a minor (<1 km lateral extent) melt volume related to the point of maximum uplift measured at the caldera. Seismic coda-wave amplitude inversions depict the caldera rim limits in analogy to velocity tomography and map the lateral extension of ~4-km-deep deformation source. Once combined with the results from velocity tomography and gravity inversions, they reconstruct the feeding systems that connect deep deformation source and shallow vents across the eastern caldera, capped by a seismic horizon around a depth of 2 km.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achauer U, Evans JR, Stauber DA (1988) High-resolution seismic tomography of compressional wave velocity structure at Newberry Volcano, Oregon cascade range. J Geophys Res 93(B9):10135–10147. https://doi.org/10.1029/JB093iB09p10135

    Article  Google Scholar 

  • AGIP (1987) Modello geotermico del sistema flegreo. Sintesi. Servizi Centrali per l’Esplorazione, SERG-MESG, San Donato Milanese, Italy, 23 pp

    Google Scholar 

  • Akande WG, De Siena L, Gan Q (2019) Three-dimensional kernel-based coda attenuation imaging of caldera structures controlling the 1982–1984 Campi Flegrei unrest. J Volcanol Geotherm Res 381:273–283

    Article  Google Scholar 

  • Aki K (1980) Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz. Phys Earth Planet Int 21:50–60

    Article  Google Scholar 

  • Amoruso A, Crescentini L, Berrino G (2008) Simultaneous inversion of deformation and gravity changes in a horizontally layered half-space: evidences for magma intrusion during the 1982–1984 unrest at Campi Flegrei caldera (Italy). Earth Planet Sci Lett 272(1–2):181–188

    Article  Google Scholar 

  • Amoruso A, Crescentini L, Sabbetta I (2014) Paired deformation sources of the Campi Flegrei caldera (Italy) required by recent (1980–2010) deformation history. J Geophys Res Solid Earth 119(2):858–879

    Article  Google Scholar 

  • Aster RC, Meyer RP (1988) Three-dimensional velocity structure and hypocenter distribution in the Campi Flegrei caldera, Italy. Tectonophysics 149:195–218. https://doi.org/10.1016/00401951(88)90173-4

    Article  Google Scholar 

  • Auger E, Gasparini P, Virieux J, Zollo A (2001) Seismic evidence for an extended magmatic sill under Mt. Vesuvius. Science 294:1510–1512. https://doi.org/10.1126/science.1064893

    Article  Google Scholar 

  • Auger E, Virieux J, Zollo A (2003) Locating and quantifying the seismic discontinuities in a complex medium through the migration and AVA analysis of reflected and converted waves: an application to the Mt Vesuvius volcano. Geophys J Int 152(2):486–496. https://doi.org/10.1046/j.1365-246X.2003.01864.x

    Article  Google Scholar 

  • Barberi F, Cassano E, La Torre P, Sbrana A (1991) Structural evolution of Campi Flegrei caldera in light of volcanological and geophysical data. J Volcanol Geotherm Res 48:33–49

    Article  Google Scholar 

  • Battaglia J, Zollo A, Virieux J, Dello Iacono D (2008) Merging active and passive data sets in travel-time tomography: the case study of Campi Flegrei Caldera (Southern Italy). Geophys Prospect 56:555–573. https://doi.org/10.1111/j.1365-2478.2007.00687.x

    Article  Google Scholar 

  • Bellucci Sessa E, Castellano M, Ricciolino P (2021) GIS applications in volcano monitoring: the study of seismic swarms at the Campi Flegrei volcanic complex, Italy. Adv Geosci 52:131–144

    Article  Google Scholar 

  • Benz HM, Chouet BA, Dawson PB, Lahr JC, Page RA, Hole JA (1996) Three-dimensional P and S wave velocity structure of Redoubt Volcano, Alaska. J Geophys Res 101:8111–8128. https://doi.org/10.1029/95JB03046

    Article  Google Scholar 

  • Berrino G, Corrado G, Riccardi U (1998) Sea gravity data in the Gulf of Naples: a contribution to delineating the structural pattern of the Vesuvian area. J Geophys Res 82:139–150

    Google Scholar 

  • Berrino G, Corrado G, Riccardi U (2008) Sea gravity data in the Gulf of Naples. A contribution to delineating the structural pattern of the Phlegrean volcanic district. J Volcanol Geotherm Res 175:241–252. https://doi.org/10.1016/j.jvolgeores.2008.03.007

    Article  Google Scholar 

  • Blacic TM, Latorre D, Virieux J, Vassallo M (2009) Converted phases analysis of the Campi Flegrei caldera using active seismic data. Tectonophysics 470(3–4):243–256. https://doi.org/10.1016/j.tecto.2008.12.006

    Article  Google Scholar 

  • Bonafede M (1991) Hot fluid migration: An efficient source of round deformation: application to the 1982–1985 crisis at Campi Flegrei-Italy. J Volcanol Geotherm Res 48:187–198

    Article  Google Scholar 

  • Bonasia V, Del Pezzo E, Pingue F, Scandone R, Scarpa R (1985) Eruptive history, seismic activity and ground deformation at Mt. Vesuvius, Italy. Ann Geofis 3:395–406

    Google Scholar 

  • Brenguier F, Shapiro NM, Campillo M, Nercessian A, Ferrazzini V (2007) 3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations. Geophys Res Lett 34:L02305. https://doi.org/10.1029/2006GL028586

    Article  Google Scholar 

  • Bruno PPG, Cippitelli G, Rapolla A (1998) Seismic study of the Mesozoic carbonate basement around Mt. Somma-Vesuvius, Italy. J Geophys Res 84:311–322. https://doi.org/10.1016/S0377-0273(98)00023-7

    Article  Google Scholar 

  • Bruno PPG, Rapolla A, Di Fiore V (2003) Structural setting of the Bay of Naples (Italy) seismic reflection data: implications for Campanian volcanism. Tectonophysics 372(3–4):193–213. https://doi.org/10.1016/S0040-1951(03)00327-5

    Article  Google Scholar 

  • Caliro S, Chiodini G, Moretti R, Avino R, Granieri D, Russo M, Fiebig J (2007) The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochim Cosmochim Acta 71:3040–3055. https://doi.org/10.1016/j.gca.2007.04.007

    Article  Google Scholar 

  • Calò M, Tramelli A (2018) Anatomy of the campi flegrei caldera using enhanced seismic tomography models. Sci Rep 8(1):1–12

    Article  Google Scholar 

  • Campos-Enriquez JO, Arredondo-Fragoso JJ (1992) Gravity study of Los Humeros caldera complex, Mexico: structure and associated geothermal system. J Volcanol Geotherm Res 49(1–2):69–90

    Article  Google Scholar 

  • Capuano P, Achauer U (2003) Gravity field modeling in the Vesuvius and Campanian area. In: Zollo A et al. (eds) The TomoVes seismic project: looking inside Mt. Vesuvius. Cuen, Naples, Italy

    Google Scholar 

  • Capuano P, Russo G, Vanorio T, Prevete R, Auger E, Bonagura M, Caielli G, Convertito V, Damiano N, D’Auria L, Emolo A, Lovisa L, Moretti M (2006) 1984 Campi Flegrei seismic waveforms compilation. In: Zollo A et al. (eds) Geophysical exploration of the Campi Flegrei (Southern Italy) Caldera’ interiors: data, methods and results. Doppiavoce, Naples, Italy, pp 15–24. ISBN: 88-89972-04-1

    Google Scholar 

  • Capuano P, Russo G, Civetta L, Orsi G, D’Antonio M, Moretti R (2013) The active portion of the Campi Flegrei caldera structure imaged by 3D inversion of gravity data. Geochem Geophys Geosyst 14:4681–4697

    Article  Google Scholar 

  • Carlino S, Somma R (2009) Eruptive versus non-eruptive behaviour of large calderas: the example of Campi Flegrei caldera (Southern Italy). Bull Volcanol 72(7):871–886. https://doi.org/10.1007/s00445-010-0370-y

    Article  Google Scholar 

  • Casertano L, Oliveri A, Quagliariello MT (1976) Hydrodynamics and geodynamics in the Phlegraean Fields area of Italy. Nature 264:161–164

    Article  Google Scholar 

  • Cassano E, La Torre P (1987) Geophysics. In: Rosi M, Sbrana A (eds) Phlegrean Fields. Quaderni de “La Ricerca Scientifica”, vol 114(9). CNR, Rome, Italy, pp 94–103

    Google Scholar 

  • Chiarabba C, Moretti M (2006) An insight into the unrest phenomena at the Campi Flegrei caldera from VP and VP/VS tomography. Terra Nova 18:373–379. https://doi.org/10.1111/j.1365-3121.2006.00701.x

    Article  Google Scholar 

  • Chiodini G, Todesco M, Caliro S, Del Gaudio C, Macedonio G, Russo M (2003) Magma degassing as a trigger of bradyseismic events: the case of Phlegrean Fields (Italy). Geophys Res Lett 30(8):1434. https://doi.org/10.1029/2002GL016790

    Article  Google Scholar 

  • Chiodini G, Paonita A, Aiuppa A, Costa A, Caliro S, De Martino P, Acocella V, Vandemeulebrouck J (2016) Magmas near the critical degassing pressure drive volcanic unrest towards a critical state. Nat Commun 7(1):1–9

    Article  Google Scholar 

  • Chiodini G, Caliro S, Avino R, Bini G, Giudicepietro F, De Cesare W, Ricciolino P, Aiuppa A, Cardellini C, Petrillo Z, Selva J, Siniscalchi A, Tripaldi S (2021) Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy). J Volcanol Geotherm Res 414:107245

    Article  Google Scholar 

  • Chouet B (1988) Resonance of a fluid-driven crack: radiation properties and implications for the source of long-period events and harmonic tremor. J Geophys Res 93(B5):4375–4400. https://doi.org/10.1029/JB093iB05p04375

    Article  Google Scholar 

  • Chu R, Helmberger DV, Sun D, Jackson JM, Zhu L (2010) Mushy magma beneath Yellowstone. Geophys Res Lett 37:L01306. https://doi.org/10.1029/2009GL041656

    Article  Google Scholar 

  • Cinque A, Rolandi G, Zamparelli V (1985) L’estensione dei depositi marini olocenici nei Campi Flegrei in relazione alla vulcano-tettonica. Boll Soc Geol It 104(2):327–348

    Google Scholar 

  • Cinque A, Patacca E, Scandone P, Tozzi M (1993) Quaternary kinematic evolution of the Southern Apennines. Relationships between surface geological features and deep lithospheric structures. Ann Geophys 36:249–260

    Google Scholar 

  • Davy BW, Caldwell TG (1998) Gravity, magnetic and seismic surveys of the caldera complex, Lake Taupo, North Island, New Zealand. J Volcanol Geotherm Res 81:69–89

    Article  Google Scholar 

  • De Bonitatibus A, Latmiral G, Mirabile L, Palumbo A, Sarpi E, Scalera A (1970) Rilievi sismici per riflessione: strutturali, ecografici (fumarole) e batimetrici del Golfo di Pozzuoli. Boll Soc Natur Napoli Italy 79:97–115

    Google Scholar 

  • De Landro G, Serlenga V, Russo G, Amoroso O, Festa G, Bruno PP, Gresse M, Vandemeulebrouck J, Zollo A (2017) 3D ultra-high resolution seismic imaging of shallow Solfatara crater in Campi Flegrei (Italy): new Insights on deep hydrothermal fluid circulation processes. Sci Reports 7(1). https://doi.org/10.1038/s41598-017-03604-0

  • de Lorenzo S, Zollo A, Monelli F (2001) Source parameters and three-dimensional attenuation structure from the inversion of microearthquake pulse width data: Qp imaging and inferences on the thermal state of Campi Flegrei caldera (Southern Italy). J Geophys Res 106. https://doi.org/10.1029/2000JB900462

  • De Siena L, Del Pezzo E, Bianco F, Tramelli A (2009) Multiple resolution seismic attenuation imaging at Mt Vesuvius. Phys Earth Planet Inter 173:17–32

    Article  Google Scholar 

  • De Siena L, Del Pezzo E, Bianco F (2010) Seismic attenuation imaging of Campi Flegrei: evidence of gas reservoirs, hydrothermal basins, and feeding systems. J Geophys Res 115:B09312. https://doi.org/10.1029/2009JB006938

    Article  Google Scholar 

  • De Siena L, Del Pezzo E, Bianco F (2011) A scattering image of Campi Flegrei from the auto correlation functions of velocity tomograms. Geophys J Int 184(3):1304–1310. https://doi.org/10.1111/j.1365-246X.2010.04911.x

    Article  Google Scholar 

  • De Siena L, Thomas C, Aster R (2014a) Multi-scale reasonable attenuation tomography analysis (MuRAT): an imaging algorithm designed for volcanic regions. J Volcanol Geotherm Res 277:22–35

    Article  Google Scholar 

  • De Siena L, Thomas C, Waite GP, Moran SC, Klemme S (2014b) Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens. J Geophys Res Solid Earth 119(11):8223–8238

    Article  Google Scholar 

  • De Siena L, Amoruso A, Del Pezzo E, Wakeford Z, Castellano M, Crescentini L (2017a) Space-weighted seismic attenuation mapping of the aseismic source of Campi Flegrei 1983–1984 unrest. Geophys Res Lett 44(4):1740–1748

    Google Scholar 

  • De Siena L, Chiodini G, Vilardo G, Del Pezzo E, Castellano M, Colombelli S, Tisato N, Ventura G (2017b) Source and dynamics of a volcanic caldera unrest: Campi Flegrei, 1983–1984. Sci Rep 7(1):1–13

    Article  Google Scholar 

  • De Siena L, Sammarco C, Cornwell DG, La Rocca M, Bianco F, Zaccarelli L, Nakahara H (2018) Ambient seismic noise image of the structurally controlled heat and fluid feeder pathway at Campi Flegrei caldera. Geophys Res Lett 45(13):6428–6436

    Article  Google Scholar 

  • Del Pezzo E, Bianco F, De Siena L, Zollo A (2006) Small scale shallow attenuation structure at Mt. Vesuvius, Italy. Phys Earth Planet Inter 157:257–268

    Article  Google Scholar 

  • Del Pezzo E, Bianco F (2013a) A reappraisal of seismic Q evaluated in Campi Flegrei caldera. Receipt for the application to risk analysis. J Seismol 17:829–837. https://doi.org/10.1007/s10950-012-9349-9

    Article  Google Scholar 

  • Del Pezzo E, Bianco F (2013b) Inside Mt. Vesuvius, a new method to look at the seismic tomographic imaging. Ann Geophys 56(4):S0443. ISSN: 2037-416X. https://doi.org/10.4401/ag-6449

  • Del Pezzo E, Ibanez J, Prudencio J, Bianco F, De Siena L (2016) Absorption and scattering 2-D volcano images from numerically calculated space-weighting functions. Geophys J Int 206(2):742–756

    Article  Google Scholar 

  • Dello Iacono D, Zollo A, Vassallo M, Vanorio T, Judenherc S (2009) Seismic images and rock properties of the very shallow structure of Campi Flegrei caldera (Southern Italy). Bull Volcanol 71(3):275–284. https://doi.org/10.1007/s00445-008-0222-1

    Article  Google Scholar 

  • DeNosaquo KR, Smith RB, Lowry AR (2009) Density and lithospheric strength models of the Yellowstone-Snake River Plain volcanic system from gravity and heat flow data. J Volcanol Geotherm Res 188:108–127. https://doi.org/10.1016/j.jvolgeores.2009.08.006

    Article  Google Scholar 

  • Di Stefano R, Bianchi I, Ciaccio MG, Carrara G, Kissling E (2011) Three-dimensional Moho topography in Italy: new constraints from receiver functions and controlled source seismology. Geochem Geophys Geosys 12:Q09006. https://doi.org/10.1029/2011GC003649

    Article  Google Scholar 

  • Di Vito MA, Isaia R, Orsi G, Southon J, de Vita S, D’Antonio M, Pappalardo L, Piochi M (1999) Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:221–246

    Article  Google Scholar 

  • Di Vito MA, Acocella V, Aiello G, Barra D, Battaglia M, Carandente A, Del Gaudio C, de Vita S, Ricciardi GP, Ricco C, Scandone R, Terrasi F (2016) Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption. Sci Rep 6:32245. https://doi.org/10.1038/srep32245

    Article  Google Scholar 

  • Dvorkin J, Prasad M, Sakai A, Lavoie D (1999) Elasticity of marine sediments: rock physics modeling. Geophys Res Lett 26(12):1781–1784. https://doi.org/10.1029/1999GL900332

    Article  Google Scholar 

  • Eberhart-Phillips D, Reyners M, Chadwick M, Chiu JM (2005) Crustal heterogeneity and subduction processes: 3-D Vp, Vp/Vs and Q in the southern North Island, New Zealand. Geophys J Int 162(1):270–288

    Article  Google Scholar 

  • Fedi M, Nunziata C, Rapolla A (1991) The Campania-Campi Flegrei area: a contribution to discern the best structural model from gravity interpretation. J Volcanol Geotherm Res 48:51–59

    Article  Google Scholar 

  • Fedi M, Cella F, D’Antonio M, Florio G, Paoletti V, Morra V (2018) Gravity modeling finds a large magma body in the deep crust below the Gulf of Naples, Italy. Sci Rep 8:8229. https://doi.org/10.1038/s41598-018-26346-z

  • Ferrazzini V, Aki K (1987) Slow waves trapped in a fluid-filled infinite crack: implication for volcanic tremor. J Geophys Res 92(B9):9215–9223. https://doi.org/10.1029/JB092iB09p09215

    Article  Google Scholar 

  • Ferrucci F, Gaudiosi G, Pino NA, Luongo G, Hirn A, Mirabile L (1989) Seismic detection of a major Moho upheaval beneath the Campania volcanic area (Naples, Southern Italy). Geophys Res Lett 16(11):1317–1320. https://doi.org/10.1029/GL016i011p01317

    Article  Google Scholar 

  • Ferrucci F, Hirn A, De Natale G, Virieux J, Mirabile L (1992) P-SV conversions at a shallow boundary beneath Campi Flegrei caldera (Italy): evidence for the magma chamber. J Geophys Res 97(B11):15351–15359. https://doi.org/10.1029/92JB00888

    Article  Google Scholar 

  • Fialko Y, Simons M, Khazan Y (2001) Finite source modelling of magmatic unrest in Socorro, New Mexico, and Long Valley, California. Geophys J Int 146:191–200. https://doi.org/10.1046/j.1365-246X.2001.00453.x

    Article  Google Scholar 

  • Finetti I, Morelli C (1974) Esplorazione sismica a riflessione nei Golfi di Napoli e Pozzuoli. Boll Geofis Teor Appl 16:175–222

    Google Scholar 

  • Florio G, Fedi M, Cella F, Rapolla A (1999) The Campanian Plain and Phlegrean Fields: structural setting from potential field data. J Volcanol Geotherm Res 91:361–379

    Article  Google Scholar 

  • Fournier N, Rymer H, Williams-Jones G, Brenes J (2004) High-resolution gravity survey: investigation of subsurface structures at Poas volcano, Costa Rica. Geophys Res Lett 31:L15602. https://doi.org/10.1029/2004GL020563

    Article  Google Scholar 

  • Gaeta FS, De Natale G, Peluso F, Castagnolo D, Troise C, Pingue F, Mita DG, Rossano S (1998) Genesis and evolution of unrest episodes at Campi Flegrei caldera: the role of the thermal fluid dynamical processes in the geothermal system. J Geophys Res 103:20921–20933

    Article  Google Scholar 

  • Gailler LS, Lénat JF, Lambert M, Levieux G, Villeneuve N, Froger JL (2009) Gravity structure of Piton de la Fournaise volcano and inferred mass transfer during the 2007 crisis. J Volcanol Geotherm Res 184(1–2):31–48. https://doi.org/10.1016/j.jvolgeores.2009.01.024

    Article  Google Scholar 

  • Gasparini P and TomoVes Working Group (1998) Looking inside Mount Vesuvius. EOS Trans Am Geophys Un 79(19):229–232

    Google Scholar 

  • De Gori P, Chiarabba C, Patanè D (2005) Qp structure of Mount Etna: constraints for the physics of the plumbing system. J Geophys Res Solid Earth 110(B5)

    Google Scholar 

  • Hansen S, Thurber C, Mandernach M, Haslinger F, Doran C (2004) Seismic velocity and attenuation structure of the east rift zone and south flank of Kilauea Volcano, Hawaii. Bull Seismol Soc Am 94(4):1430–1440

    Article  Google Scholar 

  • Hashin Z, Shtrikman S (1963) A variational approach to the elastic behavior of multiphase minerals. J Mech Phys Solids 11(2):127–140. https://doi.org/10.1016/0022-5096(63)90060-7

    Article  Google Scholar 

  • Hellweg M (2000) Physical models for the source of Lascar’s harmonic tremor. J Volcan Geotherm Res 101(1–2):83–198

    Google Scholar 

  • Hobro JW, Singh SC, Minshull TA (2003) Three-dimensional tomographic inversion of combined reflection and refraction seismic traveltime data. Geophys J Int 152(1):79–93. https://doi.org/10.1046/j.1365-246X.2003.01822.x

    Article  Google Scholar 

  • Hole JA (1992) Nonlinear high-resolution three-dimensional seismic travel time tomography. J Geophys Res 97(B5):6553–6562. https://doi.org/10.1029/92JB00235

    Article  Google Scholar 

  • Huffman A, Castagna J (2001) The petrophysical basis for shallow water flow prediction using multicomponent seismic data. Lead Edge 20(9):1030–1052

    Article  Google Scholar 

  • Imbò G, Bonasia V, Gasparini P (1964) Rilievo gravimetrico dell’isola di Procida. Ann Oss Ves, Naples, Italy 6:117–138

    Google Scholar 

  • Jolivet L, Faccenna C, Piromallo C (2009) From mantle to crust: Stretching the Mediterranean. Earth and Planetary Science Letters 285(1–2):198–209. https://doi.org/10.1016/j.epsl.2009.06.017

  • Jousset P, Neuberg J, Sturton S (2003) Modelling the time-dependent frequency content of low-frequency volcanic earthquakes. J Volcanol Geotherm Res 128:201–223

    Article  Google Scholar 

  • Judenherc S, Zollo A (2004) The Bay of Naples (southern Italy): constraints on the volcanic structures inferred from a dense seismic survey. J Geophys Res 109(B10):B10312. https://doi.org/10.1029/2003JB002876

    Article  Google Scholar 

  • Latorre D, Virieux J, Monfret T, Monteiller V, Vanorio T, Got JL, Lyon-Caen H (2004) A new seismic tomography of Aigion area (Gulf of Corinth-Greece) from a 1991 dataset. Geophys J Int 159:1013–1031

    Article  Google Scholar 

  • Locke CA, Cassidy J, MacDonald A (1993) Three-dimensional structure of relict stratovolcanoes in Taranaki, New Zealand: evidence from gravity data. J Volcanol Geotherm Res 59(1–2):121–130. https://doi.org/10.1016/0377-0273(93)90081-2

    Article  Google Scholar 

  • Lomax A, Zollo A, Capuano P, Virieux J (2001) Precise, absolute earthquake location under Somma Vesuvius volcano using a new three dimensional velocity model. Geophys J Int 146:313–331

    Google Scholar 

  • Maercklin N (2008) Seismic scatterer imaging using shot array beamforming: method and application to the Campi Flegrei caldera. In: Marzocchi W, Zollo A (eds) Conception, verification, and application of innovative techniques to study active volcanoes. Doppiavoce, Naples, Italy, pp 261–268. ISBN: 978-88-89972-09-0

    Google Scholar 

  • Maercklin N, Zollo A (2009) Estimation of elastic contrasts in a layered model from seismic PS-to-PP amplitude ratios. Geophys J Int 179(3):1617–1626. https://doi.org/10.1111/j.1365-246X.2009.04350.x

    Article  Google Scholar 

  • Maino A, Tribalto G (1971) Rilevamento gravimetrico di dettaglio dell’isola d’Ischia, Napoli. Boll Serv Geol Ital 92:109–122

    Google Scholar 

  • Malone SD, Boyko C, Weaver CS (1983) Seismic precursors to the Mount St. Helens eruptions in 1981 and 1982. Science 221(4618):1376–1378

    Article  Google Scholar 

  • Mangiacapra A, Moretti R, Rutherford M, Civetta L, Orsi G, Papale P (2008) The deep magmatic system of the Campi Flegrei caldera (Italy). Geophys Res Lett 35:L21304. https://doi.org/10.1029/2008GL035550

    Article  Google Scholar 

  • Masturyono, McCaffrey R, Wark DA, Roecker SW, Fauzi, Ibrahim G, Sukhyar (2001) Distribution of magma beneath Toba caldera complex, north Sumatra, Indonesia, constrained by three-dimensional P wave velocities, seismicity, and gravity. Geochem Geophys Geosyst 2. https://doi.org/10.1029/2000GC000096

  • Mavko G, Mukerji T, Dvorkin J (1998) The rock physics handbook: tools for seismic analysis in porous media. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Milia A, Torrente M (2003) Late-quaternary volcanism and transtensional tectonics in the Bay of Naples, Campanian continental margin, Italy. Miner Petrol 79:49–65

    Article  Google Scholar 

  • Monteiller V, Got JL, Virieux J, Okubo P (2005) An efficient algorithm for double-difference tomography and location in heterogeneous media, with an application to the Kilauea volcano. J Geophys Res 110:B12306. https://doi.org/10.1029/2004JB003466

    Article  Google Scholar 

  • Mora MM, Lesage P, Valette B, Alvarado GE, Leandro C, Metaxian JP, Dorel J (2006) Shallow velocity structure and seismic site effects at Arenal volcano, Costa Rica. J Volcanol Geotherm Res 152(1–2):121–139. https://doi.org/10.1016/j.jvolgeores.2005.09.013

    Article  Google Scholar 

  • Moretti R, Arienzo I, Civetta L, Orsi G, Papale P (2013) Multiple magma degassing sources at an explosive volcano. Earth Planet Sci Lett 367:95–104. https://doi.org/10.1016/j.epsl.2013.02.013

    Article  Google Scholar 

  • Moretti R, De Natale G, Troise C (2020) Hydrothermal versus magmatic: geochemical views and clues into the unrest dilemma at Campi Flegrei. In: Vesuvius, Campi Flegrei, and Campanian volcanism. Elsevier, pp 371–406

    Google Scholar 

  • Murase T, McBirney AR (1973) Properties of some common igneous rocks and their melt at high temperatures. Geol Soc Am Bull 84(11):3563–3592

    Article  Google Scholar 

  • Nakajima J, Hasegawa A (2003) Tomographic imaging of seismic velocity structure in and around the Onikobe volcanic area, northeastern Japan: implications for fluid distribution. J Volcanol Geother Res 127(1–2):1–18

    Article  Google Scholar 

  • Nakamichi H, Tanaka S, Hamaguchi H (2002) Fine S wave velocity structure beneath Iwate volcano, northeastern Japan, as derived from receiver functions and travel times. J Volcanol Geotherm Res 116(3–4):235–255. https://doi.org/10.1016/S0377-0273(02)00218-4

    Article  Google Scholar 

  • Nercessian A, Hirn A, Tarantola A (1984) Three dimensional seismic transmission prospecting of the Mont Dore volcano, France. Geophys J R Astr Soc 76:307–315

    Article  Google Scholar 

  • Neuberg J, Luckett, Ripepe M, Braun T (1994) Highlight from a seismic broadband array on Stromboli volcano. Geophys Res Lett 21:749–752

    Google Scholar 

  • Neuberg JW, Tuffen H, Collier L, Green D, Powell T, Dingwell D (2006) The trigger mechanism of low-frequency earthquakes on Montserrat. J Volcanol Geotherm Res 153(1–2):37–50. https://doi.org/10.1016/j.jvolgeores.2005.08.008

    Article  Google Scholar 

  • Nishigami KY (1991) A new inversion method of coda waveforms to determine spatial distribution of coda scatterers in the crust and uppermost mantle. Geophys Res Lett 18(12):2225–2228

    Article  Google Scholar 

  • Nunziata C, Costanzo M (2010) Low Vs crustal zones in the Campanian plain (Southern Italy). Miner Petrol 100(3):215–225. https://doi.org/10.1007/s00710-010-0129-3

    Article  Google Scholar 

  • Nur A, Marion D, Yin H (1991) Wave velocities in sediments. In: Hovem J, Richardson MD, Stoll RD (eds) Shear waves in marine sediments. Kluwer Academic, pp 131–140

    Google Scholar 

  • Nur A, Mavko G, Dvorkin J, Galmundi D (1995) Critical porosity: the key to relating physical properties to porosity in rocks. In: Proceedings of 65th annual international meeting social expl and geophysics, p 878

    Google Scholar 

  • Oliveri del Castillo A, Quagliariello MT (1969) Sulla genesi del bradisismo flegreo. Atti Assoc Geofis Ital 4:1–4

    Google Scholar 

  • Operto S, Ravaut C, Improta L, Virieux J, Herrero A, Dell’Aversana P (2004) Quantitative imaging of complex structures from dense wide-aperture seismic data by multiscale traveltime and waveform inversions: a case study. Geophys Prosp 52:625–651. https://doi.org/10.1111/j.1365-2478.2004.00452.x

    Article  Google Scholar 

  • Orsi G, D’Antonio M, de Vita S, Gallo G (1992) The Neapolitan Yellow Tuff, a large-magnitude trachytic phreatoplinian eruption: eruptive dynamics, magma withdrawal and caldera collapse. J Volcanol Geotherm Res 53:275–287. https://doi.org/10.1016/0377-0273(92)90086-S

    Article  Google Scholar 

  • Orsi G, de Vita S, Di Vito M (1996) The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214

    Article  Google Scholar 

  • Orsi G, Civetta L, Del Gaudio C, de Vita S, Di Vito MA, Isaia R, Petrazzuoli SM, Ricciardi G, Ricco C (1999) Short-term ground deformations and seismicity in the resurgent Campi Flegrei caldera (Italy): an example of active block-resurgence in a densely populated area. J Volcanol Geotherm Res 91(2–4):415–451

    Article  Google Scholar 

  • Orsi G, De Vita S, Di Vito M, Isaia R, Nave R, Heiken, G (2003) Facing volcanic and related hazards in the neapolitan area. In: Heiken G, Fakuntiny R, Sutter J (eds) Earth science in the city: a reader, vol 56. Wiley

    Google Scholar 

  • Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530. https://doi.org/10.1007/s00445-003-0336-4

    Article  Google Scholar 

  • Pappalardo L, Matrolorenzo G (2012a) Rapid differentiation in a sill-like magma reservoir: a case study from the Campi Flegrei caldera. Sci Rep 2(712). https://doi.org/10.1038/srep00712

  • Pappalardo L, Mastrolorenzo G (2012b) Rapid differentiation in a sill-like magma reservoir: a case study from the Campi Flegrei caldera. Sci Rep 2:712. https://doi.org/10.1038/srep00712

    Article  Google Scholar 

  • Patacca E, Sartori R, Scandone P (1990) Tyrrhenian basin and apenninic arcs: kinematic relations since late Tortonian times. Mem Soc Geol It 45:425–451

    Google Scholar 

  • Patanè D, Barberi G, Cocina O, De Gori P, Chiarabba C (2006) Time-resolved seismic tomography detects magma intrusions at Mount Etna. Science 313(5788):821–823. https://doi.org/10.1126/science.1127724

    Article  Google Scholar 

  • Pepe S, De Siena L, Barone A, Castaldo R, D'Auria L, Manzo M, Casu F, Fedi M, Lanari R, Bianco F, Tizzani P (2019) Volcanic structures investigation through SAR and seismic interferometric methods: the 2011–2013 Campi Flegrei unrest episode. Remote Sens Environ 234(111440)

    Google Scholar 

  • Pescatore T, Diplomatico G, Senatore MR, Tramutoli M, Mirabile L (1984) Contributi allo studio del Golfo di Pozzuoli: aspetti stratigrafici e strutturali. Mem Soc Geol Ital 27:133–149

    Google Scholar 

  • Prudencio J, De Siena L, Ibáñez JM, Del Pezzo E, Garcia-Yeguas A, Diaz-Moreno A (2015) The 3D attenuation structure of deception island (Antarctica). Surv Geophys 36(3):371–390

    Article  Google Scholar 

  • Rawlinson N, Sambridge M (2004) Wave front evolution in strongly heterogeneous layered media using the fast marching method. Geophys J Int 156(3):631–647

    Article  Google Scholar 

  • Rosi M, Sbrana A (eds) (1987) Phlegrean Fields. Quad Ric Sci 114(9):1–175. ISSN: 0556-9664

    Google Scholar 

  • Rosi M, Sbrana A, Principe C (1983) The phlegrean fields: structural evolution, volcanic history and eruptive mechanisms. J Volcanol Geoth Res 17(1–4):273–288

    Google Scholar 

  • Rowe CA, Aster RC, Kyle PR, Schlue JW (1998) RR dibble broadband recording of strombolian explosions and associated very‐longperiod seismic signals on Mount Erebus Volcano, Ross Island, Antarctica. Geophys Res Lett 25(13):2297–2300

    Google Scholar 

  • Rowe CA, Aster RC, Kyle PR, RR Dibble, Schlue JW (2000) Seismic and acoustic observations at Mount Erebus volcano, Ross island, Antarctica, 1994–1998. J Volcanol Geotherm Res 101(1–2):105–128

    Google Scholar 

  • Rymer H (1994) Microgravity change as a precursor to volcanic activity. J Volcanol Geotherm Res 61:311–328

    Article  Google Scholar 

  • Sacchi M, Alessio G, Aquino I, Esposito E, Molisso F, Nappi R, Porfido S, Violante C (2009) Risultati preliminari della campagna oceanografica CAFE_07—Leg 3 nei Golfi di Napoli e Pozzuoli, Mar Tirreno Orientale. Quad Geofis 64:1–28. ISSN: 1590-2595

    Google Scholar 

  • Sanders CO, Ponko SC, Nixon LD, Schwartz FA (1995) Seismological evidence for magmatic and hydrothermal structure in Long Valley caldera from local earthquake attenuation and velocity tomography. J Geophys Res 100:8311–8326

    Article  Google Scholar 

  • Sato H, Fehler MC, Maeda T (2012) Seismic wave propagation and scattering in the heterogeneous earth, vol 496. Springer, Berlin, Germany

    Book  Google Scholar 

  • Satriano C, Zollo A, Rowe C (2008) Iterative tomographic analysis based on automatic refined picking. Geophys Pros 56:467–475. https://doi.org/10.1111/j.1365-2478.2008.00700.x

  • Schimmel M, Paulssen H (1997) Noise reduction and detection of weak, coherent signals through phase-weighted stacks. Geophys J Int 130(2):497–505

    Article  Google Scholar 

  • Schmeling H (1985) Numerical models on the influence of partial melt on elastic, anelastic and electric properties of rocks. Part I: elasticity and an elasticity. Phys Earth Planet Int 41(1):34–57

    Article  Google Scholar 

  • Schurr B, Asch G, Rietbrock A, Trumbull R, Haberland C (2003) Complex patterns of fluid and melt transport in the central Andean subduction zone revealed by attenuation tomography. Earth Planet Sci Lett 215(1–2):105–119

    Article  Google Scholar 

  • Serlenga V, de Lorenzo S, Russo G, Amoroso O, Garambois S, Virieux J, Zollo A (2016) A three-dimensional QP imaging of the shallowest subsurface of Campi Flegrei offshore caldera, Southern Italy. Geophys Res Lett 43(21):11209–11218

    Article  Google Scholar 

  • Siniscalchi A, Tripaldi S, Romano G, Chiodini G, Improta L, Petrillo Z, D’Auria L, Caliro S, Avino R (2019) Reservoir structure and hydraulic properties of the Campi Flegrei geothermal system inferred by audiomagnetotelluric, geochemical, and seismicity study. J Geophys Res Solid Earth 124(6):5336–5356

    Article  Google Scholar 

  • Sketsiou P, Napolitano F, Zenonos A, De Siena L (2020) New insights into seismic absorption imaging. Phys Earth Planet Int 298:106337

    Google Scholar 

  • Stabile TA, Zollo A, Vassallo M, Iannaccone G (2007) Underwater acoustic channel properties in the Gulf of Naples and their effects on digital data transmission. Ann Geophys 50:313–328

    Google Scholar 

  • Takei Y (2002) Effect of pore geometry on VP/VS: from equilibrium geometry to crack. J Geophys Res Solid Earth 107(B2):ECV-6

    Google Scholar 

  • Thorpe S, Locke CA, Brown GC, Francis PW, Randal M (1981) Magma chamber below Poàs volcano, Costa Rica. J Geol Soc 138:367–373. https://doi.org/10.1144/gsjgs.138.3.0367

    Article  Google Scholar 

  • Thurber CH (1984) Seismic detection of the summit magma complex of Kilauea volcano, Hawaii. Science 223:165–167

    Article  Google Scholar 

  • Todesco M, Chiodini G, Macedonio G (2003) Monitoring and modeling hydrothermal fluid emission at La Solfatara (Phlegrean Fields, Italy). An interdisciplinary approach to the study of diffuse degassing. J Volcanol Geotherm Res 125:57–79. https://doi.org/10.1016/S0377-0273(03)00089-1

    Article  Google Scholar 

  • Tramelli A, Del Pezzo E, Bianco F, Boschi E (2006) 3-D scattering image of the Campi Flegrei caldera (Southern Italy). New hints on the position of the old caldera rim. Phys Earth Planet Int 155:269–280

    Google Scholar 

  • Tramelli A, Del Pezzo E, Fehler MC (2009) 3-D scattering image of Mt. Vesuvius. Bull Seismol Soc Am 99(3):1962–1972. https://doi.org/10.1785/0120080273

    Article  Google Scholar 

  • Vanorio T, Kanitpanyacharoen W (2015) Rock physics of fibrous rocks akin to Roman concrete explains uplifts at Campi Flegrei caldera. Science 349(6248):617–621. https://doi.org/10.1126/science.aab1292

    Article  Google Scholar 

  • Vanorio T, Virieux J, Capuano P, Russo G (2005) Three-dimensional seismic tomography from P wave and S wave microearthquake travel times and rock physics characterization of the Campi Flegrei caldera. J Geophys Res 110(B3):B03201. https://doi.org/10.1029/2004JB003102

    Article  Google Scholar 

  • Vassallo M, Zollo A, Dello Iacono D, Maercklin N, Virieux J (2008) Converted phase identification and retrieval of Vp/Vs ratios from move-out reflection analysis: application to the Campi Flegrei caldera. In: Marzocchi W, Zollo A (eds) Conception, verification, and application of innovative techniques to study active volcanoes. Doppiavoce, Naples, Italy, pp 349–360

    Google Scholar 

  • Vassallo M, Zollo A, Festa G, Maercklin N (2010) Campi Flegrei (Southern Italy) calderic model from the joint inversion of reflected (PP, PS) and first arrival seismic traveltimes. 7th EGU General assembly geophysics research abstract 12:13157

    Google Scholar 

  • Vilardo G, Isaia R, Ventura G, De Martino P, Terranova C (2010) InSAR permanent scatterer analysis reveals fault re-activation during inflation and deflation episodes at Campi Flegrei caldera. Remote Sens Environ 114(10):2373–2383

    Article  Google Scholar 

  • Vitale S, Isaia R (2014) Fractures and faults in volcanic rocks (Campi Flegrei, Southern Italy): insight into volcano-tectonic processes. Int J Earth Sci 103(3):801–819

    Article  Google Scholar 

  • Yokoyama I (1989) Microgravity and height changes caused by volcanic activity: four Japanese examples. Bull Volcanol 51:333–345

    Article  Google Scholar 

  • Yokoyama S, Mena M (1991) Structure of La Primavera caldera, Jalisco, Mexico. J Volcanol Geotherm Res 47:183–194

    Article  Google Scholar 

  • Young N, Isaia R, Gottsmann J (2020) Gravimetric constraints on the hydrothermal system of the Campi Flegrei caldera. J Geophys Res Solid Earth 125(7):e2019JB019231

    Google Scholar 

  • Zhdanov MS (2002) Geophysical inverse theory and regularization problems. Elsevier, Amsterdam, The Netherlands, p 605

    Google Scholar 

  • Zimmer M (2003) Controls on the seismic velocities of unconsolidated sands: measurements of pressure, porosity and compaction effects. Ph.D. thesis, Stanford University, Stanford, CA

    Google Scholar 

  • Zollo A, Judenherc S, Auger E, D’Auria L, Virieux J, Capuano P, Chiarabba C, De Franco R, Makris J, Michelini A, Musacchio G (2003) Evidence for the buried rim of Campi Flegrei caldera from 3-D active seismic imaging. Geophys Res Lett 30(19). https://doi.org/10.1029/2003GL018173

  • Zollo A, Maercklin N, Vassallo M, Dello Iacono D, Virieux J, Gasparini P (2008) Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys Res Lett 35(12):L12306. https://doi.org/10.1029/2008GL034242

    Article  Google Scholar 

Download references

Acknowledgements

This paper has been prepared in the frameworks of the Projects UNREST and V2 (Precursori) funded by the Department of the Civil Protection of Italy and by I.N.G.V, and partially funded by the Spanish research project CGL2011-29499-C02-01, EPHESTOS Istituto Andaluz de Geofisica - Universidad de Granada, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Bianco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bianco, F. et al. (2022). Seismic and Gravity Structure of the Campi Flegrei Caldera, Italy. In: Orsi, G., D'Antonio, M., Civetta, L. (eds) Campi Flegrei. Active Volcanoes of the World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37060-1_2

Download citation

Publish with us

Policies and ethics