Skip to main content

Polyelectrolytes for Batteries

  • Living reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials

Synonyms

Lithium batteries; Polymer electrolytes

Definition

The polyelectrolytes are polymeric single-ion conductors including charged groups along the backbone.

Solid Polymer Electrolytes: The Current State of Understanding

The concept of solid polymer electrolyte (SPE) dates back to the 1970s when Armand first proposed a new ion conductor based on a lithium salt properly complexed by a polar and aprotic polymer matrix without the use of organic solvents [1]. Ever since, a number of polymer/salt systems have been presented and deeply investigated, such as those based on PMMA, PAN, or PVDF [2–5]. In spite of the wide spectrum of SPEs available in the literature, the preferred combinations are still those based on polyethylene oxide (PEO), which allows a better Li solvation due to its structural similarity to the crown ethers and to the presence of ether oxygen in the structure. In case of PEO-LITFSI complexes, ionic conductivity of the order of 10−4 S cm−1has been reached at room...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Armand M, Chabagno JM, Duclot MJ (1979) Polyethers as solid electrolytes. In: Vashishta P (ed) Fast ion transport in solids. North Holland, New York, p. 131

    Google Scholar 

  2. Gray FM (1997) Polymer electrolytes. Royal Society of Chemistry, London

    Google Scholar 

  3. Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462

    Article  CAS  Google Scholar 

  4. Armand MB, Bruce PG, Forsyth M, Scrosati B, Wieczorek W (2011) Polymer electrolytes. In: Bruce DW, O’Hare D, Walton RI (eds) Energy materials. Wiley, Chichester. doi:10.1002/9780470977798.ch1

    Google Scholar 

  5. Hollinan DT, Balsara NP (2013) Polymer electrolytes. Annu Rev Mater Res 43:503–525

    Article  Google Scholar 

  6. Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40:2525–2540

    Article  CAS  Google Scholar 

  7. Ratner MA, Shriver DF (1988) Ion transport in solvent-free polymers. Chem Rev 88:109–124

    Article  CAS  Google Scholar 

  8. Quartarone E, Mustarelli P, Magistris A (1988) PEO-based composite electrolytes. Solid State Ionics 110:1–14

    Article  Google Scholar 

  9. Maranas JK (2012) Polyelectrolytes for batteries: current state of understanding. In: Page K (ed) Polymers for energy storage and delivery: polyelectrolytes and fuel cells. ACS Symposium Series. American Chemical Society, Washington, DC

    Google Scholar 

  10. Mazor H, Golodnitsky D, Peled E, Wieczorek W, Scrosati B (2008) A search for single-ion conducting polymer electrolyte: combined effect of anion trap and inorganic filler. J Power Sources 178:736–743

    Article  CAS  Google Scholar 

  11. Dias FB, Plomp L, Veldhuis JBJ (2000) Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 88:169–191

    Article  CAS  Google Scholar 

  12. Ohno H, Ito K (1995) Poly(ehtylene oxide)s having carboxylate groups on the chain end. Polymer 36:891–893

    Article  CAS  Google Scholar 

  13. Snyder JF, Ratner MA, Shriver DF (2003) Ion conductivity of comb polysiloxane polyelectrolytes containing oligoether and perfluoroether sidechains. J Electrochem Soc 150:A1090–A1094

    Article  CAS  Google Scholar 

  14. Onishi K, Matsumoto M, Shigehara K (1998) Thioaluminate polymer complexes as single-ionic solid electrolytes. Chem Mater 10:927–931

    Article  CAS  Google Scholar 

  15. Cakmak G, Verhoeven A, Jansen M (2009) Synthesis and characterization of solid single ion conductors based on poly[lithium tetrakis(ethyleneboryl)borate]. J Mater Chem 19:4310–4318

    Article  CAS  Google Scholar 

  16. Nishihara Y, Miyazaki M, Tomita Y, Kadono Y, Takagi K (2008) Synthesis and ion-conducting characteristics of inorganic-organic hybrid polymers bearing a tetraarylpentaborate unit. J Polym Sci Polym Chem 46:7913–7918

    Article  CAS  Google Scholar 

  17. Wang JHH, Colby RH (2013) Exploring the role of ion solvation in ethylene oxide based single-ion conducting polyanions and polycations. Soft Matter 9:10275–10286

    Article  Google Scholar 

  18. Wang W, Tudryn GJ, Colby RH, Winey KI (2011) Thermally driven ionic aggregation in poly(ethylene oxide)-based sulfonate ionomers. J Am Chem Soc 133:10826–10831

    Article  CAS  Google Scholar 

  19. Liang S, Choi UH, Liu W, Runt J, Colby RH (2012) Synthesis and lithium ion conduction of polysiloxane single-ion conductors containing novel weak-binding borates. Chem Mater 24:2316–2323

    Article  CAS  Google Scholar 

  20. Allcock HR (2012) Polyphosphazene elastomers, gels, and other soft materials. Soft Matter 8:7521–7532

    Article  CAS  Google Scholar 

  21. Allcock HR, Welna DT, Maher AE (2006) Single-ion conductors-polyphosphazenes with sulfonimide functional groups. Solid State Ionics 177:741–747

    Article  CAS  Google Scholar 

  22. Sadoway DR (2004) Block and graft copolymer electrolytes for high-performance, solid-state, lithium batteries. J Power Sources 129:1–3

    Article  CAS  Google Scholar 

  23. Niitani T et al (2005) Synthesis of Li+ ion conductive PEO-PSt block copolymer electrolyte with microphase separation structure. Electrochem Solids State Lett 8:A385–A388

    Article  CAS  Google Scholar 

  24. Sadoway D, Huang B, Trapa PE et al (2001) (2001) Self-doped block copolymer electrolytes for solid-state rechargeable lithium batteries. J Power Sources 97–98:621–623

    Article  Google Scholar 

  25. Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L et al (2013) Single-ion ABA triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat Mater 12:452–457

    Article  CAS  Google Scholar 

  26. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629

    Article  CAS  Google Scholar 

  27. Ohno H (2007) Design of ion conductive polymers based on ionic liquids. Macromol Symp 249–250:551–556

    Article  Google Scholar 

  28. Mecerreyes D (2011) Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog Polym Sci 36:1629–1648

    Article  CAS  Google Scholar 

  29. Shapov AS et al (2011) Polymeric ionic liquids: comparison of polycations and polyanions. Macromolecules 44:9792–9803

    Article  Google Scholar 

  30. Wang P, Zhou Y-N, Luo J-S, Luo Z-H (2014) Poly(ionic liquid)s-based nanocomposite polyelectrolytes with tunable ionic conductivity prepared via SI-ATRP. Polym Chem 5:882–891

    Article  CAS  Google Scholar 

  31. Sun J, MacFarlane DR, Forsyth M (2002) Lithium polyelectrolyte-ionic liquid systems. Solid State Ionics 147:333–339

    Article  CAS  Google Scholar 

  32. Ogihara W et al (2004) Ionic conductivity of polymer gels deriving from alkaly metal ionic liquids and negatively charged polyelectrolytes. Electrochim Acta 49:1797–1801

    Article  CAS  Google Scholar 

  33. Tiyapiboonchaiya C et al (2003) Polyelectrolytes-in-ionic-liquids electrolytes. Macromol Chem Phys 204:2147–2154

    Article  CAS  Google Scholar 

  34. Tiyapiboonchaiya C, Pringle JM, Sun J et al (2004) The zwitterion effect in high-conductivity polyelectrolytes materials. Nat Mater 3:29–32

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliana Quartarone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Quartarone, E., Mustarelli, P. (2014). Polyelectrolytes for Batteries. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36199-9_217-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36199-9_217-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36199-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics