Skip to main content

Phosphodiesterase Inhibitors

  • Reference work entry
  • First Online:
Encyclopedia of Psychopharmacology

Synonyms

PDE inhibitors

Definition

There are 11 families of phosphodiesterases (PDEs; PDE1–PDE11), which degrade the second messengers cAMP and/or cGMP. The activity of PDEs can be selectively inhibited with drugs. The most widely known PDE inhibitor is sildenafil, which is one of the three PDE5 inhibitors approved for the treatment of erectile dysfunction and also arterial pulmonary hypertension. In addition, two PDE3 inhibitors are approved for treating congestive heart failure or intermittent claudication, respectively. Recently, one PDE4 inhibitor has been approved for the treatment of chronic obstructive pulmonary disease. At the moment, PDE inhibitors are explored as possible therapeutic CNS drug targets for memory loss (PDE1, PDE2, PDE4, PDE5, PDE9), Alzheimer’s disease (PDE3, PDE4, PDE5, PDE7, PDE9), Parkinson’s disease (PDE1, PDE4, PDE7), Huntington’s disease (PDE1, PDE4, PDE5, PDE10), anxiety (PDE2, PDE5), depression (PDE4), schizophrenia (PDE3, PDE10), pain (PDE4, PDE5), or...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambriz-Tututi M, Velazquez-Zamora DA, Urquiza-Marin H, Granados-Soto V (2005) Analysis of the mechanism underlying the peripheral antinociceptive action of sildenafil in the formalin test. Eur J Pharmacol 512:121–127

    CAS  PubMed  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    CAS  PubMed  Google Scholar 

  • Brink CB, Clapton JD, Eagar BE, Harvey BH (2008) Appearance of antidepressant-like effect by sildenafil in rats after central muscarinic receptor blockade: evidence from behavioural and neuro-receptor studies. J Neural Transm 115:117–125

    CAS  PubMed  Google Scholar 

  • Chapman TM, Goa KL (2003) Cilostazol: a review of its use in intermittent claudication. Am J Cardiovasc Drugs 3:117–138

    CAS  PubMed  Google Scholar 

  • Cheng J, Grande JP (2007) Cyclic nucleotide phosphodiesterase (PDE) inhibitors: novel therapeutic agents for progressive renal disease. Exp Biol Med (Maywood) 232:38–51

    CAS  Google Scholar 

  • Esposito K, Reierson GW, Rong Luo H, Sheng Wu G, Licinio J, Wong ML (2009) Phosphodiesterase genes and antidepressant treatment response: a review. Ann Med 41:177–185

    CAS  PubMed  Google Scholar 

  • García-Barroso C, Ricobaraza A, Pascual-Lucas M, Unceta N, Rico AJ, Goicolea MA, Sallés J, Lanciego JL, Oyarzabal J, Franco R, Cuadrado-Tejedor M, García-Osta A (2013) Tadalafil crosses the blood–brain barrier and reverses cognitive dysfunction in a mouse model of AD. Neuropharmacology 64:114–123

    PubMed  Google Scholar 

  • Gurney ME, Burgin AB, Magnusson OT, Stewart LJ (2011) Small molecule allosteric modulators of phosphodiesterase 4. Handb Exp Pharmacol 204:167–192

    CAS  PubMed  Google Scholar 

  • Keravis T, Lugnier C (2012) Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signaling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br J Pharmacol 165:1288–1305

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lahu G, Nassr N, Hünnemeyer A (2011) Pharmacokinetic evaluation of roflumilast. Expert Opin 7:1577–1591

    CAS  Google Scholar 

  • Lakics V, Karran EH, Boess FG (2010) Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology 59:367–374

    CAS  PubMed  Google Scholar 

  • Liebenberg N, Harvey BH, Brand L, Wegener G, Brink CB (2012) Chronic treatment with the phosphodiesterase type 5 inhibitors sildenafil and tadalafil display anxiolytic effects in Flinders Sensitive Line rats. Metab Brain Dis 27:337–340

    CAS  PubMed  Google Scholar 

  • Menniti FS, Faraci WS, Schmidt CJ (2006) Phosphodiesterases in the CNS: targets for drug development. Nat Rev Drug Discov 5:660–670

    CAS  PubMed  Google Scholar 

  • Perez-Gonzalez R, Pascual C, Antequera D, Bolos M, Redondo M, Perez DI, Pérez-Grijalba V, Krzyzanowska A, Sarasa M, Gil C, Ferrer I, Martinez A, Carro E (2013) Phosphodiesterase 7 inhibitor reduced cognitive impairment and pathological hallmarks in a mouse model of Alzheimer’s disease. Neurobiol Aging 34:2133–2145

    CAS  PubMed  Google Scholar 

  • Puzzo D, Sapienza S, Arancio O, Palmeri A (2008) Role of phosphodiesterase 5 in synaptic plasticity and memory. Neuropsychiatr Dis Treat 4:371–387

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reneerkens OA, Rutten K, Steinbusch HW, Blokland A, Prickaerts J (2009) Selective phosphodiesterase inhibitors: a promising target for cognition enhancement. Psychopharmacology (Berl) 202:419–443

    CAS  Google Scholar 

  • Sharma S, Kumar K, Deshmukh R, Sharma PL (2013) Phosphodiesterases: regulators of cyclic nucleotide signals and novel molecular target for movement disorders. Eur J Pharmacol 714:486–497

    CAS  PubMed  Google Scholar 

  • Shim YS, Pae CU, Kim SW, Kim HW, Kim JC, Koh JS (2011) Effects of repeated dosing with Udenafil (Zydena) on cognition, somatization and erection in patients with erectile dysfunction: a pilot study. Int J Imp Res 23:109–114

    CAS  Google Scholar 

  • Sierksma AS, Rutten K, Sydlik S, Rostamian S, Steinbusch HW, van den Hove DL, Prickaerts J (2013) Chronic phosphodiesterase type 2 inhibition improves memory in the APPswe/PS1dE9 mouse model of Alzheimer’s disease. Neuropharmacology 64:124–136

    CAS  PubMed  Google Scholar 

  • Szatmari SZ, Whitehouse PJ (2003) Vinpocetine for cognitive impairment and dementia. Cochrane Database Syst Rev(1), CD003119

    Google Scholar 

  • Xu Y, Zhang HT, O’Donnell JM (2011) Phosphodiesterases in the central nervous system: implications in mood and cognitive disorders. Handb Exp Pharmacol 204:447–485

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos Prickaerts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Prickaerts, J. (2015). Phosphodiesterase Inhibitors. In: Stolerman, I.P., Price, L.H. (eds) Encyclopedia of Psychopharmacology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36172-2_403

Download citation

Publish with us

Policies and ethics