Skip to main content

Loop Algorithm

  • Chapter
  • First Online:

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 176))

Abstract

The loop algorithm for the world-line quantum Monte Carlo method on quantum lattice models is presented. After introducing the path integral representation that maps a quantum model to a classical one, we describe the continuous imaginary time limit, cluster algorithm, and the rejection free scheme, which are the major improvements on the quantum Monte Carlo technique during the last decades. By means of the loop algorithm, one can simulate various unfrustrated quantum lattice models of millions of sites at extremely low temperatures with absolute accuracy, being free from the critical and fine-mesh slowing down and the Suzuki-Trotter discretization error. We also discuss some technical aspects of the algorithm such as effective implementation and parallelization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C.P. Robert, G. Casella, Monte Carlo Statistical Methods, 2nd edn. (Springer, New York, 2004)

    Book  MATH  Google Scholar 

  2. D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, 2nd edn. (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  3. M. Suzuki, Prog. Theor. Phys. 56, 1454 (1976)

    Article  ADS  MATH  Google Scholar 

  4. M. Suzuki (ed.), Quantum Monte Carlo Methods in Condensed Matter Physics (World Scientific, Singapore, 1994)

    Google Scholar 

  5. H.G. Evertz, G. Lana, M. Marcu, Phys. Rev. Lett. 70, 875 (1993)

    Article  ADS  Google Scholar 

  6. U.J. Wiese, H.P. Ying, Z. Phys. B 93, 147 (1994)

    Article  ADS  Google Scholar 

  7. H.G. Evertz, Adv. Phys. 52, 1 (2003)

    Article  ADS  Google Scholar 

  8. N. Kawashima, K. Harada, J. Phys. Soc. Jpn. 73, 1379 (2004)

    Article  ADS  MATH  Google Scholar 

  9. N.V. Prokof’ev, B.V. Svistunov, I.S. Tupitsyn, Sov. Phys. JETP 87, 310 (1998)

    Article  ADS  Google Scholar 

  10. A.W. Sandvik, J. Kurkijärvi, Phys. Rev. B 43, 5950 (1991)

    Article  ADS  Google Scholar 

  11. S.P. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability (Springer, New York, 1993)

    Book  MATH  Google Scholar 

  12. H. Suwa, S. Todo, Phys. Rev. Lett. 105, 120603 (2010)

    Article  ADS  Google Scholar 

  13. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  14. M. Creutz, Phys. Rev. D 21, 2308 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Bortz, M. Kalos, J. Lebowitz, J. Comput. Phys. 17(1), 10 (1975)

    Article  ADS  Google Scholar 

  16. R.H. Swendsen, J.S. Wang, Phys. Rev. Lett. 58, 86 (1987)

    Article  ADS  Google Scholar 

  17. D. Kandel, E. Domany, Phys. Rev. B 43, 8539 (1991)

    Article  ADS  Google Scholar 

  18. N. Kawashima, J.E. Gubernatis, J. Stat. Phys. 80, 169 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. D.E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, vol. 2, 3rd edn. (Addison Wesley, Reading, 1997), p. 121

    Google Scholar 

  20. K. Fukui, S. Todo, J. Comp. Phys. 228, 2629 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. S. Todo, K. Kato, Prog. Theor. Phys. Suppl. 138, 535 (2000)

    Article  ADS  Google Scholar 

  22. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 2nd edn. (MIT Press, Cambridge, 2001)

    MATH  Google Scholar 

  23. S. Todo, Prog. Theor. Phys. Suppl. 145, 188 (2002)

    Article  ADS  Google Scholar 

  24. S. Todo, in Computer Simulation Studies in Condensed Matter Physics XV, ed. by D.P. Landau, S.P. Lewis, H.B. Schüttler (Springer, Berlin, 2003), p. 89

    Google Scholar 

  25. S. Todo, H. Matsuo, H. Shitara (2012 preprint)

    Google Scholar 

  26. N. Kawashima, J. Stat. Phys. 82, 131 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. H. Rieger, N. Kawashima, Eur. Phys. J. B 9, 233 (1999)

    Article  ADS  Google Scholar 

  28. V.A. Kashurnikov, N.V. Prokof’ev, B.V. Svistunov, M. Troyer, Phys. Rev. B 59, 1162 (1999)

    Article  ADS  Google Scholar 

  29. K. Harada, N. Kawashima, M. Troyer, Phys. Rev. Lett. 90, 117203 (2003)

    Article  ADS  Google Scholar 

  30. K. Harada, M. Troyer, N. Kawashima, J. Phys. Soc. Jpn. 67, 1130 (1998)

    Article  ADS  Google Scholar 

  31. S. Todo, K. Kato, Phys. Rev. Lett. 87, 047203 (2001)

    Article  ADS  Google Scholar 

  32. R.G. Melko, A.W. Sandvik, Phys. Rev. E 72, 026702 (2005)

    Article  ADS  Google Scholar 

  33. K. Harada, N. Kawashima, J. Phys. Soc. Jpn. 70, 13 (2001)

    Article  ADS  Google Scholar 

  34. A.J. Walker, ACM Trans. Math. Softw. 3, 253 (1977)

    Article  MATH  Google Scholar 

  35. J.E. Gubernatis, M. Jarrell, R.N. Silver, D.S. Sivia, Phys. Rev. B 44, 6011 (1991)

    Article  ADS  Google Scholar 

  36. F. Cooper, B. Freedman, D. Preston, Nucl. Phys. B 210[FS6], 210 (1989)

    ADS  Google Scholar 

  37. H. Suwa, S. Todo, (2012 in preparation)

    Google Scholar 

  38. K. Okamoto, K. Nomura, Phys. Lett. A 169, 433 (1992)

    Article  ADS  Google Scholar 

  39. U. Wolff, Phys. Rev. Lett. 62, 361 (1989)

    Article  ADS  Google Scholar 

  40. R. Brower, S. Chandrasekharan, U.J. Wiese, Phys. A 261, 520 (1998)

    Article  Google Scholar 

  41. C.M. Fortuin, P.W. Kasteleyn, Physica 57, 536 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  42. S. Chandrasekharan, U.J. Wiese, Phys. Rev. Lett. 83, 3116 (1999)

    Article  ADS  Google Scholar 

  43. M. Nyfeler, F.J. Jiang, F. Kämpfer, U.J. Wiese, Phys. Rev. Lett. 100, 247206 (2008)

    Article  ADS  Google Scholar 

  44. C. Yasuda, S. Todo, K. Hukushima, F. Alet, M. Keller, M. Troyer, H. Takayama, Phys. Rev. Lett. 94, 217201 (2005)

    Article  ADS  Google Scholar 

  45. K. Kato, S. Todo, K. Harada, N. Kawashima, S. Miyashita, H. Takayama, Phys. Rev. Lett. 84, 4204 (2000)

    Article  ADS  Google Scholar 

  46. B. Bauer, et al., J. Stat Mech. p. P05001 (2011). http://iopscience.iop.org/1742-5468/2011/05/P05001/

  47. http://wistaria.comp-phys.org/alps-looper/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Synge Todo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Todo, S. (2013). Loop Algorithm. In: Avella, A., Mancini, F. (eds) Strongly Correlated Systems. Springer Series in Solid-State Sciences, vol 176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35106-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35106-8_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35105-1

  • Online ISBN: 978-3-642-35106-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics