Skip to main content

Diagrammatic Monte Carlo and Worm Algorithm Techniques

  • Chapter
  • First Online:
Strongly Correlated Systems

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 176))

  • 3867 Accesses

Abstract

This chapter reviews basic principles of Diagrammatic Monte Carlo and Worm Algorithm techniques. Diagrammatic Monte Carlo establishes generic rules for unbiased sampling of well defined configuration spaces when the only source of errors is of statistical origin due to finite sampling time, no matter whether configuration parameters involve discrete, as in the Ising model, or continuous, as in Feynman diagrams or lattice path integrals, variables. Worm Algorithms allow one to sample efficiently configuration spaces with complex topology and non-local constraints which cause severe problems for Monte Carlo schemes based on local updates. They achieve this goal by working with the enlarged configuration space which includes configurations violating constraints present in the original formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Google Scholar 

  2. N.V. Prokof’ev, B.V. Svistunov, Polaron problem by diagrammatic quantum monte carlo. Phys. Rev. Lett. 81(12), 2514–2517 (1998)

    Article  ADS  Google Scholar 

  3. A.S. Mishchenko, N.V. Prokof’ev, A. Sakamoto, B.V. Svistunov, Diagrammatic quantum monte carlo study of the fröhlich polaron. Phys. Rev. B 62(10), 6317–6336 (2000)

    Article  ADS  Google Scholar 

  4. E. Gull, A.J. Millis, A. Lichtenstein, A.N. Rubtsov, M. Troyer, P. Werner, Continuous-time monte carlo methods for quantum impurity models, arXiv:1012.4474 (2010)

    Google Scholar 

  5. N. Prokof’ev B. Svistunov, Bold diagrammatic monte carlo technique: when the sign problem is welcome. Phys. Rev. Lett. 99(25), 250201 (2007)

    Google Scholar 

  6. N.V. Prokof’ev, B.V. Svistunov, Bold diagrammatic monte carlo: a generic sign-problem tolerant technique for polaron models and possibly interacting many-body problems. Phys. Rev. B 77(12), 125101 (2008)

    Google Scholar 

  7. F.J. Dyson, Divergence of perturbation theory in quantum electrodynamics. Phys. Rev. 85(4), 631–632 (1952)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. L.G. Molinari, N. Manini, Enumeration of many-body skeleton diagrams. Euro. Phys. J. B 51(3), 331–336 (2006)

    Article  ADS  Google Scholar 

  9. E. Kozik, K. Van Houcke, E. Gull, L. Pollet, N. Prokof’ev, B. Svistunov, M. Troyer, Diagrammatic monte carlo for correlated fermions. Euro. Phys. Lett. 90(1), 10004 (2010)

    Google Scholar 

  10. K. Van Houcke, F. Werner, E. Kozik, N.V. Prokof’ev, B.V. Svistunov, M.J.H. Ku, A.T. Sommer, L.W. Cheuk, A. Schirotzek, M. Zwierlein, Feynman diagrams versus Fermi-gas Feynman emulator. Nat. Phys. 8, 366 (2012). doi:10.1038/nphys2273

    Google Scholar 

  11. R.P. Feynman, Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20(2), 367–387 (1948)

    Article  MathSciNet  ADS  Google Scholar 

  12. N. Prokof’ev, B. Svistunov, I. Tupitsyn, Worm algorithm in quantum monte carlo simulations. Phys. Lett. A 238(4–5), 253–257 (1998)

    Google Scholar 

  13. N. Prokof’ev, B. Svistunov, Worm algorithms for classical statistical models. Phys. Rev. Lett. 87(16), 160601 (2001)

    Google Scholar 

  14. A. Kuklov, N. Prokof’ev, B. Svistunov, Superfluid-superfluid phase transitions in a two-component Bose-Einstein condensate. Phys. Rev. Lett. 92(3), 030403 (2004)

    Google Scholar 

  15. S.G. Söyler1, B. Capogrosso-Sansone, N.V. Prokof’ev, B.V. Svistunov, Sign-alternating interaction mediated by strongly correlated lattice bosons. New J. Phys. 11(7), 073036 (2009)

    Google Scholar 

  16. M. Boninsegni, N.V. Prokof’ev, B.V. Svistunov, Worm algorithm and diagrammatic monte carlo: a new approach to continuous-space path integral monte carlo simulations. Phys. Rev. E 74(3), 036701 (2006)

    Google Scholar 

  17. K. Van Houcke, E. Kozik, N. Prokof’ev, B. Svistunov, Diagrammatic monte carlo, in Computer Simulation Studies in Condensed Matter Physics, vol. XXI, ed. by D.P. Landau, S.P. Lewis, H.B. Schuttler (Springer, Heidelberg, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Prokof’ev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prokof’ev, N. (2013). Diagrammatic Monte Carlo and Worm Algorithm Techniques. In: Avella, A., Mancini, F. (eds) Strongly Correlated Systems. Springer Series in Solid-State Sciences, vol 176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35106-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35106-8_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35105-1

  • Online ISBN: 978-3-642-35106-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics