Skip to main content

Hydrodynamic Shape Optimization of Axisymmetric Bodies Using Multi-fidelity Modeling

  • Chapter
Simulation and Modeling Methodologies, Technologies and Applications

Abstract

Hydrodynamic shape optimization of axisymmetric bodies is presented. A surrogate-based optimization algorithm is described that exploits a computationally cheap low-fidelity model to construct a surrogate of an accurate but CPU-intensive high-fidelity model. The low-fidelity model is based on the same governing equations as the high-fidelity one, but exploits coarser discretization and relaxed convergence criteria. A multiplicative response correction is applied to the low-fidelity CFD model output to yield an accurate and reliable surrogate model. The approach is implemented for both direct and inverse design. In the direct design approach the optimal hull shape is found by minimizing the drag, whereas in the inverse approach a target pressure distribution is matched. Results show that optimized designs are obtained at substantially lower computational cost (over 94%) when compared to the direct high-fidelity model optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yamamoto, I.: Research and development of past, present, and future AUV technologies. In: Proc. Int. Mater-class AUV Technol. Polar Sci. – Soc. Underwater Technol., March 28-29, pp. 17–26 (2007)

    Google Scholar 

  2. Allen, B., Vorus, W.S., Prestero, T.: Propulsion system performance enhancements on REMUS AUVs. In: Proceedings MTS/IEEE Oceans 2000, Providence, Rhode Island (2000)

    Google Scholar 

  3. Huang, T.T., Liu, H.L., Groves, N.C., Forlini, T.J., Blanton, J.N., Gowing, S.: Measurements of flows over an axisymmetric body with various appendages (DARPA SUBOFF Experiments). In: Proceedings of the 19th Symposium on Naval Hydrodynamics, Seoul, Korea (1992)

    Google Scholar 

  4. Yang, C., Löhener, R.: Prediction of flows over an axisymmetric body with appendages. In: The 8th International Conference on Numerical Ship Hydrodynamics, Busan, Korea, September 22-25 (2003)

    Google Scholar 

  5. de Barros, E.A., Dantas, J.L.D., Pascoal, A.M., de Sá, E.: Investigation of normal force and moment coefficients for an auv at nonlinear angle of attack and sideslip angle. IEEE Journal of Oceanic Engineering 33(4), 538–549 (2008)

    Article  Google Scholar 

  6. Jagadeesh, P., Murali, K., Idichandy, V.G.: Experimental investigation of hydrodynamic force coefficients over auv hull form. Ocean Engineering 36, 113–118 (2009)

    Article  Google Scholar 

  7. Goldschmied, F.R.: Integrated hull design, boundary-layer control, and propulsion of submerged bodies. J. Hydronautics 1(1), 2–11 (1966)

    Article  Google Scholar 

  8. Parsons, J.S., Goodson, R.E., Goldschmied, F.R.: Shaping of axisymmetric bodies for minimum drag in incompressible flow. J. Hydronautics 8(3), 100–107 (1974)

    Article  Google Scholar 

  9. Myring, D.F.: A theoretical study of body drag in subcritical axisymmetric flow. Aeronautical Quarterly 28, 186–194 (1976)

    Google Scholar 

  10. Dalton, C., Zedan, M.F.: Design of low-drag axisymmetric shapes by the inverse method. J. Hydronautics 15(1), 48–54 (1980)

    Article  Google Scholar 

  11. Lutz, T., Wagner, S.: Numerical shape optimization of natural laminar flow bodies. In: Proceedings of the 21st ICAS Congress, Melbourne, Australia, September 13-18 (1998)

    Google Scholar 

  12. Alvarez, A., Bertram, V., Gualdesi, L.: Hull hydrodynamic optimization of autonomous underwater vehicles operating at snorkelling depth. Ocean Engineering 36, 105–112 (2009)

    Article  Google Scholar 

  13. Solov’ev, S.A.: Determining the shape of an axisymmetric body in a viscous incompressible flow on the basis of the pressure distribution on the body surface. J. of Applied Mechanics and Technical Physics 50(6), 927–935 (2009)

    Article  Google Scholar 

  14. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidynathan, R., Tucker, P.K.: Surrogate-Based Analysis and Optimization. Progress in Aerospace Sciences 41(1), 1–28 (2005)

    Article  Google Scholar 

  15. Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Progress in Aerospace Sciences 45(1-3), 50–79 (2009)

    Article  Google Scholar 

  16. Leifsson, L., Koziel, S.: Multi-fidelity design optimization of transonic airfoils using physics-based surrogate modeling and shape-preserving response prediction. Journal of Computational Science 1(2), 98–106 (2010)

    Article  Google Scholar 

  17. Alexandrov, N.M., Lewis, R.M., Gumbert, C.R., Green, L.L., Newman, P.A.: Optimization with variable-fidelity models applied to wing design. In: 38th Aerospace Sciences Meeting & Exhibit., Reno, NV, AIAA Paper 2000-0841 (2000)

    Google Scholar 

  18. Braembussche, R.A.: Numerical Optimization for Advanced Turbomachinery Design. In: Thevenin, D., Janiga, G. (eds.) Optimization and Computational Fluid Dynamics, pp. 147–189. Springer (2008)

    Google Scholar 

  19. Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Søndergaard, J.: Space Mapping: The State of the Art. IEEE Trans. Microwave Theory Tech. 52(1), 337–361 (2004)

    Article  Google Scholar 

  20. Dulikravich, G.S.: Aerodynamic shape design and optimization. In: 29th AIAA Aerospace Sciences Meeting, Reno, NV (1991)

    Google Scholar 

  21. Leoviriyakit, K., Kim, S., Jameson, A.: Viscous Aerodynamic Shape Optimization of Wings including Planform Variables. In: 21st Applied Aerodynamics Conference, Orlando, Florida, June 23-26 (2003)

    Google Scholar 

  22. Koziel, S., Cheng, Q.S., Bandler, J.W.: Space mapping. IEEE Microwave Magazine 9(6), 105–122 (2008)

    Article  Google Scholar 

  23. Lepine, J., Guibault, F., Trepanier, J.-Y., Pepin, F.: Optimized nonuniform rational b-spline geometrical representation for aerodynamic design of wings. AIAA Journal 39(11), 2033–2041 (2001)

    Article  Google Scholar 

  24. Tannehill, J.A., Anderson, D.A., Pletcher, R.H.: Computational fluid mechanics and heat transfer, 2nd edn. Taylor & Francis (1997)

    Google Scholar 

  25. FLUENT, ver. 12.1, ANSYS Inc., Southpointe, 275 Technology Drive, Canonsburg, PA 15317 (2006)

    Google Scholar 

  26. ICEM CFD, ver. 12.1, ANSYS Inc., Southpointe, 275 Technology Drive, Canonsburg, PA 15317 (2006)

    Google Scholar 

  27. Koziel, S., Bandler, J.W., Madsen, K.: A Space Mapping Framework for Engineering Optimization: Theory and Implementation. IEEE Trans. Microwave Theory Tech. 54(10), 3721–3730 (2006)

    Article  Google Scholar 

  28. Simpson, T.W., Peplinski, J., Koch, P.N., Allen, J.K.: Metamodels for computer-based engineering design: survey and recommendations. Engineering with Computers 17, 129–150 (2001)

    Article  MATH  Google Scholar 

  29. Koziel, S., Bandler, J.W.: Recent advances in space-mapping-based modeling of microwave devices. International Journal of Numerical Modelling 23(6), 425–446 (2010)

    Article  MATH  Google Scholar 

  30. Søndergaard, J.: Optimization using surrogate models – by the space mapping technique. Ph.D. Thesis, Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby (2003)

    Google Scholar 

  31. Echeverría, D., Hemker, P.W.: Manifold mapping: a two-level optimization technique. Computing and Visualization in Science 11, 193–206 (2008)

    Article  MathSciNet  Google Scholar 

  32. Koziel, S.: Shape-preserving response prediction for microwave design optimization. IEEE Trans. Microwave Theory and Tech. 58(11), 2829–2837 (2010)

    Article  Google Scholar 

  33. Alexandrov, N.M., Lewis, R.M.: An overview of first-order model management for engineering optimization. Optimization and Engineering 2, 413–430 (2001)

    Article  MATH  Google Scholar 

  34. Koziel, S.: Multi-fidelity multi-grid design optimization of planar microwave structures with Sonnet. In: International Review of Progress in Applied Computational Electromagnetics, Tampere, Finland, April 26-29, pp. 719–724 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leifur Leifsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leifsson, L., Koziel, S., Ogurtsov, S. (2013). Hydrodynamic Shape Optimization of Axisymmetric Bodies Using Multi-fidelity Modeling. In: Pina, N., Kacprzyk, J., Filipe, J. (eds) Simulation and Modeling Methodologies, Technologies and Applications. Advances in Intelligent Systems and Computing, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34336-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34336-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34335-3

  • Online ISBN: 978-3-642-34336-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics