Skip to main content

Thin Films of Nanostructured Noble Metals

  • Chapter
  • First Online:
Ellipsometry at the Nanoscale

Abstract

The optical characterisation of nanostructured noble metal films is discussed. A good description of the optical response of a 2D layer of identical metal particles on a support is obtained with the so-called Thin Island Film theory, which is based on the polarisability of an individual nanoparticle. The influence of particle shape, density, and the optical properties of both the support and the surrounding ambient is discussed as well as the ability of the commonly used Maxwell Garnett approximation to model these films. The possibilities and limits of this approach is illustrated with several examples. A short outlook towards the ellipsometric analysis of metamaterials is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.C.M. Garnett, Phil. Trans. Roy. Soc. Lond. 203A, 385 (1904)

    Google Scholar 

  2. J.C.M. Garnett, Phil. Trans. Roy. Soc. Lond. ibid 205A, 237 (1906)

    Article  Google Scholar 

  3. O.S. Heavens, Optical properties of thin films. Rep. Prog. Phys. 23, 2–65 (1960)

    Article  Google Scholar 

  4. D.A.G. Bruggeman, Ann. Phys. (Leipzig) 24, 636 (1935)

    Google Scholar 

  5. D.E. Aspnes, Am. J. Phys. 50, 704 (1982)

    Article  Google Scholar 

  6. H. Fujiwara, Spectroscopic Ellipsometry (Wiley, Hoboken, 2007)

    Book  Google Scholar 

  7. E.S. Kooij, H. Wormeester, E.A.M. Brouwer, E. van Vroonhoven, A. van Silfhout, B. Poelsema, Langmuir 18, 4401 (2002)

    Article  Google Scholar 

  8. G. Mie, On the optics of turbid media, especially colloidal metal solutions. Ann. Phys. -Berlin 25, 377–445 (1908)

    Article  MATH  Google Scholar 

  9. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995)

    Google Scholar 

  10. T.W.H. Oates, H. Wormeester, H. Arwin, Prog. Surf. Sci. 86, 328 (2011)

    Article  Google Scholar 

  11. H. Wormeester, E.S. Kooij, B. Poelsema, Phys. Stat. Sol. A 205, 756 (2008)

    Article  Google Scholar 

  12. S. Yamaguchi, J. Phys. Soc. Jpn. 15, 1577 (1960)

    Article  Google Scholar 

  13. A. Hilger, M. Tenfelde, U. Kreibig, Appl. Phys. B 73, 361 (2001)

    Article  Google Scholar 

  14. A. Rijn van Alkemade, Ph.D. thesis, University of Leiden, 1881.

    Google Scholar 

  15. J. Lekner, Theory of Reflection (Martinus Nijhof Publishers, Dordrecht, 1987)

    Google Scholar 

  16. T. Yamaguchi, S. Yoshida, A. Kinbara, Thin Solid Films 21, 173 (1973)

    Article  Google Scholar 

  17. D. Bedeaux, J. Vlieger, Phys. A 67, 55 (1973)

    Google Scholar 

  18. D. Bedeaux, J. Vlieger, Optical Properties of surfaces (Imperial College Press, London, 2002)

    Google Scholar 

  19. M.T. Haarmans, D. Bedeaux, Thin Solid Films 224, 117 (1993)

    Article  Google Scholar 

  20. H. Wormeester, A.I. Henry, E.S. Kooij, B. Poelsema, M.P. Pileni, J. Chem. Phys. 124, 204713 (2006)

    Article  Google Scholar 

  21. R. Lazzari, I. Simonsen, Thin Solid Films 419, 124 (2002)

    Article  Google Scholar 

  22. R.G. Barrera, M. Delcastillomussot, G. Monsivais, P. Villasenor, W.L. Mochan, Phys. Rev. B 43, 13819 (1991)

    Article  Google Scholar 

  23. M.R. Bohmer, E.A. van der Zeeuw, G.J.M. Koper, J. Colloid Interface Sci. 197, 242 (1998)

    Article  Google Scholar 

  24. T.W.H. Oates, A Mucklich. Nanotechnology 16, 2606–2611 (2005)

    Article  Google Scholar 

  25. H. Arwin, D.E. Aspnes, Thin Solid Films 113, 101 (1984)

    Article  Google Scholar 

  26. A.J. de Vries, E.S. Kooij, H. Wormeester, A.A. Mewe, B. Poelsema, J. Appl. Phys. 101, 053703 (2007)

    Article  Google Scholar 

  27. T.W.H. Oates, M. Ranjan et al., Highly anisotropic effective dielectric functions of silver nanoparticle arrays. Opt. Express 19(3), 2014–2028 (2011)

    Article  Google Scholar 

  28. J. Yao, Z.W. Liu et al., Optical negative refraction in bulk metamaterials of nanowires. Science 321(5891), 930–930 (2008)

    Article  Google Scholar 

  29. Y.J. Jen, A. Lakhtakia et al., Vapor-deposited thin films with negative real refractive index in the visible regime. Opt. Express 17(10), 7784–7789 (2009)

    Article  Google Scholar 

  30. J.B. Pendry, A.J. Holden et al., Low frequency plasmons in thin-wire structures. J. Phys. Condens. Matter 10(22), 4785–4809 (1998)

    Article  Google Scholar 

  31. T.W.H. Oates, A. Keller et al., Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption. Plasmonics 2(2), 47–50 (2007)

    Article  Google Scholar 

  32. T.W.H. Oates, A. Keller et al., Self-organized metallic nanoparticle and nanowire arrays from ion-sputtered silicon templates. Appl. Phys. Lett. 93(6), 3 (2008)

    Article  Google Scholar 

  33. M. Silveirinha, N. Engheta, Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. Phys. Rev. Lett. 97(15) (2006).

    Google Scholar 

  34. J.B. Pendry, A.J. Holden et al., Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999)

    Article  Google Scholar 

  35. D.R. Smith, W.J. Padilla et al., Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000)

    Article  Google Scholar 

  36. T.J. Yen, W.J. Padilla et al., Terahertz magnetic response from artificial materials. Science 303(5663), 1494–1496 (2004)

    Article  Google Scholar 

  37. G. Dolling, M. Wegener et al., Negative-index metamaterial at 780 nm wavelength. Opt. Lett. 32(1), 53–55 (2007)

    Article  Google Scholar 

  38. V.M. Agranovich, Y.N. Gartstein, Spatial dispersion and negative refraction of light. Phys. Usp. 49(10), 1029–1044 (2006)

    Article  Google Scholar 

  39. S. Tretyakov, I. Nefedov et al., Waves and energy in chiral nihility. J. Electromagn. Waves Appl. 17(5), 695–706 (2003)

    Article  Google Scholar 

  40. L.D. Landau, L.P. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984)

    Google Scholar 

  41. B. Gompf, J. Braun et al., Periodic nanostructures: spatial dispersion mimics chirality. Phys. Rev. Lett. 106, 185501 (2011)

    Article  Google Scholar 

  42. R. Ossikovski, M. Anastasiadou et al., Depolarizing Mueller matrices: how to decompose them? Phys. Stat. Sol. A 205, 720 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Wormeester .

Editor information

Editors and Affiliations

Appendices

Appendix

Lorentzian Line Shape for the Polarizability in the Dipole Approximation

The polarizability of a particle with radius a and screening parameter k to incorporate shape effects is:

$$\begin{aligned} \upalpha =4{\uppi }\mathrm{{a}}^{3}\frac{\upvarepsilon -\upvarepsilon _{\mathrm{{a}}} }{\upvarepsilon +\;\mathrm{{k}}{\upvarepsilon _{\mathrm{{a}}}} } \end{aligned}$$
(A.1)

Inserting the Drude dielectric function:

$$\begin{aligned} \upalpha&= 4{\uppi }\mathrm{{a}}^{3}\frac{\upvarepsilon _\infty -\upvarepsilon _{\mathrm{{a}}}\;-\;\frac{\mathrm{{E}}_{\mathrm{{p}}}^2 }{\mathrm{{E}}^{2}+\;\mathrm{{i}}\Gamma \mathrm{{E}}}}{\upvarepsilon _\infty +\;\mathrm{{k}}{\upvarepsilon _{\mathrm{{a}}}} -\frac{\mathrm{{E}}_{\mathrm{{p}}}^2 }{\mathrm{{E}}^{2}+\;\mathrm{{i}}\Gamma \mathrm{{E}}}}\nonumber \\&=4{\uppi }\mathrm{{a}}^{3}\frac{\left( {\frac{\upvarepsilon _\infty -\upvarepsilon _{\mathrm{{a}}} }{\upvarepsilon _\infty +\;\mathrm{{k}}{\upvarepsilon _{\mathrm{{a}}}} }} \right)\left( {\mathrm{{E}}^{2}+\;\mathrm{{i}}\Gamma \mathrm{{E}}} \right)-\frac{\mathrm{{E}}_{\mathrm{{p}}}^2 }{\upvarepsilon _\infty +\;\mathrm{{k}}{\upvarepsilon _\mathrm{{a}}} }}{\mathrm{{E}}^{2}+\;\mathrm{{i}}\Gamma \mathrm{{E}}-\frac{\mathrm{{E}}_{\mathrm{{p}}}^2 }{\upvarepsilon _\infty +\;\mathrm{{k}}{\upvarepsilon _{\mathrm{{a}}}}}}\nonumber \\&=4{\uppi }\mathrm{{a}}^{3}\frac{\chi \left( {\mathrm{{E}}^{2}+\;\mathrm{{i}}\Gamma \mathrm{{E}}} \right)-\mathrm{{E}}_{{0},\mathrm{{dip}}}^2 }{\mathrm{{E}}^{2}-\mathrm{{E}}_{{0},\mathrm{{dip}}}^2 +\;\mathrm{{i}}\Gamma \mathrm{{E}}}\nonumber \\&=4{\uppi }\mathrm{{a}}^{3}\frac{\chi \left( {\mathrm{{E}}^{2}-\mathrm{{E}}_{{0},\mathrm{{dip}}}^2 +\;\mathrm{{i}}\Gamma \mathrm{{E}}} \right)+\;\left( {\chi -1} \right)\mathrm{{E}}_{{0},\mathrm{{dip}}}^2 }{\mathrm{{E}}^{2}-\mathrm{{E}}_{{0},\mathrm{{dip}}}^2 +\;\mathrm{{i}}\Gamma \mathrm{{E}}}\nonumber \\&=4{\uppi }\mathrm{{a}}^{3}\left( {\chi +\;\left( {1-\chi } \right)\frac{\mathrm{{E}}_{{0},\mathrm{{dip}}}^2 }{\mathrm{{E}}_{{0},\mathrm{{dip}}}^2 -\mathrm{{E}}^{2}-\mathrm{{i}}\Gamma \mathrm{{E}}}} \right). \end{aligned}$$
(A.2)

This is a Lorentzian line shape with the same broadening \(\Gamma \) as the Drude lineshape and with

$$\begin{aligned} \chi =\frac{\varepsilon _\infty -\varepsilon _{\mathrm{{a}}}}{\varepsilon _\infty +k{\varepsilon _\mathrm{{a}}}}\;\;\quad {\text{ and}}\;\quad E_{{0},dip}^2 =\frac{E_{\mathrm{{p}}}^2 }{\varepsilon _\infty +k{\varepsilon _{\mathrm{{a}}}}}. \end{aligned}$$
(A.3)

Lorentzian Line Shape in the Maxwell Garnett Approach

The Maxwell Garnett approach provides an effective dielectric function according to:

$$\begin{aligned} \frac{\upvarepsilon _{\mathrm{{eff}}}}{\upvarepsilon _{\mathrm{{a}}}}=\frac{\upvarepsilon (1+2\mathrm{{f}})+\upvarepsilon _{\mathrm{{a}}}(\mathrm{{k}}_{\mathrm{{s}}}-2\mathrm{{f}})}{\upvarepsilon (1-\mathrm{{f}})+\upvarepsilon _{\mathrm{{a}}}(\mathrm{{k}}_{\mathrm{{s}}} +\,\mathrm{{f}})}. \end{aligned}$$
(A.4)

For a Drude metal particle this leads to:

$$\begin{aligned} \frac{\upvarepsilon _{\mathrm{{eff}}} }{\upvarepsilon _{\mathrm{{a}}}}&=\frac{\left( {\upvarepsilon _\infty -\frac{\mathrm{{E}}_{\mathrm{{p}}}^2 }{\mathrm{{E}}^{2}+\;\mathrm{{i}}\Gamma \mathrm{{E}}}} \right)(1+2\mathrm{{f}})+\upvarepsilon _{\mathrm{{a}}}(\mathrm{{k}_{s}} -2\mathrm{{f}})}{\left( {\upvarepsilon _\infty -\frac{\mathrm{{E}}_{\mathrm{{p}}}^2 }{\mathrm{{E}}^{2}+\;\mathrm{{i}}\Gamma \mathrm{{E}}}} \right)(1-\mathrm{{f}})+\upvarepsilon _{\mathrm{{a}}}(\mathrm{{k}}_{\mathrm{{s}}} +\,\mathrm{{f}})} \nonumber \\&=\frac{\upvarepsilon _{\infty ,\mathrm{{MG}}} \left( {\mathrm{{E}}^{2}+\,\mathrm{{i}}\Gamma \mathrm{{E}}} \right)-\mathrm{{E}}_{{0},\mathrm{{MG}}}^2 \frac{1+2\mathrm{{f}}}{1-\mathrm{{f}}}}{\mathrm{{E}}^{2}-\mathrm{{E}}_{{0},\mathrm{{MG}}}^2 +\,\mathrm{{i}}\Gamma \mathrm{{E}}} \nonumber \\&=\mathop {\upvarepsilon }\nolimits _{\infty ,\mathrm{{MG}}} +\frac{\mathrm{{E}}_{\mathrm{{p}},\mathrm{{MG}}}^2 }{\mathrm{{E}}_{{0},\mathrm{{MG}}}^2 -\mathrm{{E}}^{2}-\mathrm{{i}}\Gamma \mathrm{{E}}} \end{aligned}$$
(A.5)

which is a Lorentzian line shape with

$$\begin{aligned} \mathop {\upvarepsilon }\nolimits _{\infty ,\mathrm{{MG}}}&=1+\frac{3\mathrm{{f}}(\upvarepsilon _\infty -\upvarepsilon _{\mathrm{{a}}})}{\upvarepsilon _\infty (1-\mathrm{{f}})+\upvarepsilon _{\mathrm{{a}}}(\mathrm{{k}}_{\mathrm{{s}}} +\,\mathrm{{f}})}\\ \nonumber \mathrm{{E}}_{{0},\mathrm{{MG}}}^2&=\frac{(1-\mathrm{{f}})}{\upvarepsilon _\infty (1-\mathrm{{f}})+\upvarepsilon _{\mathrm{{a}}}(\mathrm{{k}}_{\mathrm{{s}}} +\,\mathrm{{f}})}\mathrm{{E}}_{\mathrm{{p}}}^2 . \end{aligned}$$
(A.6)

The width \(\Gamma \) of the Lorentzian is the same as the original Drude broadening. The enumerator \(\mathrm{{E}}_{\text{ p,MG}}^2\) in the last term of Eq. 6.14 can be rewritten

$$\begin{aligned} \mathrm{{E}}_{\mathrm{{p}},\mathrm{{MG}}}^2&=\mathrm{{E}}_{{0},\mathrm{{MG}}}^2 \left( {\frac{1+2\mathrm{{f}}}{1-\mathrm{{f}}}-\mathop {\upvarepsilon }\nolimits _{\infty ,\mathrm{{MG}}} } \right)\nonumber \\&= 3\mathrm{{f}}\frac{\upvarepsilon _{\mathrm{{a}}}(1+\,\mathrm{{k_s}} )}{\left[ {\upvarepsilon _\infty (1-\mathrm{{f}})+\upvarepsilon _{\mathrm{{a}}}(\mathrm{{k}}_{\mathrm{{s}}} +\,\mathrm{{f}})} \right]^{2}}\mathrm{{E}}_{\mathrm{{p}}}^2 . \end{aligned}$$
(A.7)

Lorentzian Line Shape in the TIF Approach

The derivation of the dimensionless polarizability lineshape for a Drude metal is very similar to A1:

$$\begin{aligned}&{\upalpha }^{\prime }=(1+\,\mathrm{{k}})\frac{\upvarepsilon _\infty -\upvarepsilon _{\mathrm{{a}}}-\frac{\mathrm{{E}}_{\mathrm{{p}}}^2 }{\mathrm{{E}}^{2}+\;\mathrm{{i}}\Gamma \mathrm{{E}}}}{\upvarepsilon _\infty +\;\mathrm{{k}}{\upvarepsilon _{\mathrm{{a}}}}-\frac{\mathrm{{E}}_{\mathrm{{p}}}^2 }{\mathrm{{E}}^{2}+\;\mathrm{{i}}\Gamma \mathrm{{E}}}} \nonumber \\&=(1+\,\mathrm{{k}})\left( {\chi +\left({1-\chi } \right)\frac{\mathrm{{E}}_{{0},\mathrm{{dip}}}^2 }{\mathrm{{E}}_{{0},\mathrm{{dip}}}^2 -\mathrm{{E}}^{2}-\mathrm{{i}}\Gamma \mathrm{{E}}}} \right). \end{aligned}$$
(A.8)

This is again a Lorentzian line shape with the same broadening \(\Gamma \) as the Drude lineshape and with as for the polarizability

$$\begin{aligned} \chi =\frac{\upvarepsilon _\infty -{\upvarepsilon _{\mathrm{{a}}}}}{\upvarepsilon _\infty +\;\mathrm{{k}}{\upvarepsilon _{\mathrm{{a}}}}}\;\;{\text{ and}}\;\mathrm{{E}}_{{0},\mathrm{{dip}}}^2 =\frac{\mathrm{{E}}_{\mathrm{{p}}}^2 }{\upvarepsilon _\infty +\;\mathrm{{k}}{\upvarepsilon _{\mathrm{{a}}}}}. \end{aligned}$$
(A.9)

The parallel component of the dielectric function is thus (Eq. 6.6):

$$\begin{aligned} \frac{\upvarepsilon _{\mathrm{{effP}}} }{\upvarepsilon _{\mathrm{{a}}}}=1+\,\mathrm{{f}}(1+\,\mathrm{{k}}_{\mathrm{{P}}} )\chi +\frac{\mathrm{{f}}(1+\,\mathrm{{k}}_{\mathrm{{P}}} )(1-\chi )\mathrm{{E}}_{{0},\mathrm{{dip}}}^2 }{\mathrm{{E}}_{{0},\mathrm{{dip}}}^2 -\mathrm{{E}}^{2}-\mathrm{{i}}\Gamma \mathrm{{E}}} \end{aligned}$$
(A.10)
$$\begin{aligned}&={\mathop {\upvarepsilon }\nolimits _{\infty ,\mathrm{{dip}}}} +\,\mathrm{{f}}\frac{\upvarepsilon _\mathrm{{a}}(1+\,\mathrm{{k}_{P}} )^{2}}{\upvarepsilon _\infty +\,\mathrm{{k}}_{\mathrm{{P}}}{\upvarepsilon _\mathrm{{a}}}}\frac{\mathrm{{E}}_{{0},\mathrm{{dip}}}^2 }{\mathrm{{E}}_{{0},\mathrm{{dip}}}^2 -\mathrm{{E}}^{2}-\mathrm{{i}}\Gamma \mathrm{{E}}} \nonumber \\&={\mathop {\upvarepsilon }\nolimits _{\infty ,\mathrm{{dip}}}} +\frac{\mathrm{{E}}_{\mathrm{{p}},\mathrm{{dip}}}^2 }{\mathrm{{E}}_{{0},\mathrm{{dip}}}^2 -\mathrm{{E}}^{2}-\mathrm{{i}}\Gamma \mathrm{{E}}} \end{aligned}$$
(A.11)

with

$$\begin{aligned} {\mathop {\upvarepsilon }\nolimits _{\infty ,\mathrm{{dip}}}}&=1+\,\mathrm{{f}}(1+\,\mathrm{{k}}_{\mathrm{{P}}} )\frac{\upvarepsilon _\infty -\upvarepsilon _{\mathrm{{a}}}}{\upvarepsilon _\infty +\;\mathrm{{k}}_{\mathrm{{P}}} {\upvarepsilon _{\mathrm{{a}}}}}\\ \nonumber \mathrm{{E}}_{\mathrm{{p}},\mathrm{{dip}}}^2&=\mathrm{{f}}\frac{\upvarepsilon _{\mathrm{{a}}}(1+\,\mathrm{{k}}_{\mathrm{{P}}} )^{2}}{\left( {\upvarepsilon _\infty +\;\mathrm{{k}}_{\mathrm{{P}}}{\upvarepsilon _{\mathrm{{a}}}}} \right)^{2}}\mathrm{{E}}_{\mathrm{{p}}}^2 . \end{aligned}$$
(A.12)

The resonance energy \(\mathrm{{E}}_{0,{\text{ dip}}}\) in the dipolar approximation of the TIF model looks at first the same as that of the isolated particles. However, do note that the screening factor k not only includes shape effects, but also image and neighbour interaction effects.

Quadrupole Expression for the Excess Polarizability

Haarmans and Bedeaux [18] derived an explicit form for the expression up to quadrupole order for excess surface polarizability \(\upgamma \) and \(\upbeta \):

$$\begin{aligned}&{\mathop {\upgamma }\nolimits _{\mathrm{{qu}}}} ={\upphi } \frac{4\mathrm{{a}}{\upvarepsilon _{\mathrm{{a}}}}}{3}\frac{{\updelta }{\upvarepsilon } \left( {1+\,\mathrm{{L}}1_{\mathrm{{p}}} {\updelta }{\upvarepsilon } } \right)}{\left( {1+\,\mathrm{{L}}_{\mathrm{{p}}}{{\updelta }{\upvarepsilon }} } \right)\left( {1+\,\mathrm{{L}}1_{\mathrm{{p}}} {\updelta }{\upvarepsilon } } \right)+\Lambda _{\mathrm{{p}}}{{\updelta }{\upvarepsilon }} ^{2}}\end{aligned}$$
(A.13)
$$\begin{aligned}&{\mathop {\upbeta }\nolimits _{\mathrm{{qu}}}} ={\upphi } \frac{4\mathrm{{a}}}{3{\upvarepsilon _{\mathrm{{a}}}}}\frac{{\updelta }{\upvarepsilon } \left( {1+\,\mathrm{{L}}1_{\mathrm{{z}}} {\updelta }{\upvarepsilon } } \right)}{\left( {1+\,\mathrm{{L}}_{\mathrm{{z}}}{\updelta }{\upvarepsilon } } \right)\left( {1+\,\mathrm{{L}}1_{\mathrm{{z}}}{\updelta }{\upvarepsilon }} \right)+\Lambda _{\mathrm{{z}}}{{\updelta }{\upvarepsilon }} ^{2}} \end{aligned}$$
(A.14)

Here, \(L_\mathrm{{p}} \) and \(L_\text{ z} \) represent the dipolar correction terms and \(L1_{\mathrm{{p}}}\) and \(L1_{\mathrm{{z}}}\), \(\Lambda _{\mathrm{{p}}}\) and \(\Lambda _{\mathrm{{z}}}\) are the quadrupole depolarization factors.

The image effect is modulated by the factor \(\mathrm{{B}}_{\mathrm{{sa}}}\) that describes the contrast between ambient and substrate:

$$\begin{aligned} \mathrm{{B}}_{\mathrm{{sa}}} =\left({\mathop {\upvarepsilon }\nolimits _{\mathrm{{a}}}}- {\mathop {\upvarepsilon }\nolimits _{\mathrm{{s}}}} \right)/ \left({\mathop {\upvarepsilon }\nolimits _{\mathrm{{a}}}}+\,{\mathop {\upvarepsilon }\nolimits _{\mathrm{{s}}}}\right) \end{aligned}$$
(A.15)

This contrast is quite considerable for semiconductors and metals \((\mathrm{{B}}_{\mathrm{{sa}}} {\approx }-1)\), while it is quite reduced for dielectrics. For instance for a glass substrate in a water ambient, \(\mathrm{{B}}_{\mathrm{{sa}}}\) and thus the image effect, is reduced by an order of magnitude.

The dipolar and quadrupole depolarization factors as a function of surface coverage are:

$$\begin{aligned}&\mathrm{{L}}_{\mathrm{{p}}} =\frac{1}{3}\left[ {1-\frac{\upphi }{2}+\,\mathrm{{B}}_{\mathrm{{sa}}} \left( {\frac{1}{8}-\frac{\upphi }{4\sqrt{2}}} \right)} \right] \\&\mathrm{{L}}_{\mathrm{{z}}} =\frac{1}{3}\left[ {1+\upphi +\,\mathrm{{B}}_{\mathrm{{sa}}} \left( {\frac{1}{4}-\frac{\upphi }{2\sqrt{2}}} \right)} \right] \nonumber \\&\mathrm{{L}}1_{\mathrm{{p}}} =\frac{2}{5}\left[ {1-\frac{\upphi }{8}+\frac{\mathrm{{B}}_{\mathrm{{sa}}} }{8}\left(1-\upphi \left( {\frac{1}{\sqrt{2}}\frac{3}{8}} \right)\right)} \right] \nonumber \\&\mathrm{{L}}1_{\mathrm{{z}}} =\frac{2}{5}\left[ {1+\frac{3\upphi }{16}+\frac{3\mathrm{{B}}_{\mathrm{{sa}}} }{16}\left(1-\upphi \left( {\frac{1}{\sqrt{2}}\frac{3}{8}} \right)\right)} \right] \nonumber \\&\Lambda _{\mathrm{{p}}} =-\frac{\mathrm{{B}}_{\mathrm{{sa}}}^2 }{640}\left(-1+\frac{\upphi }{\sqrt{2}}\right)^{2} \nonumber \\&\Lambda _{\mathrm{{z}}} =-\frac{3\mathrm{{B}}_{\mathrm{{sa}}}^2 }{640}\left(-1+\frac{\upphi }{\sqrt{2}}\right)^{2}\nonumber \end{aligned}$$
(A.16)

The factors \(\Lambda _{\mathrm{{p}}}\) and \(\Lambda _{\mathrm{{z}}}\) are quite small and are only present if image effects play a role. Very often, \(\Lambda _{\mathrm{{p}}}\) and \(\Lambda _{\mathrm{{z}}} << 1\) in a coverage range up to 50 %. In this case the quadrupole contribution vanishes, and only the dipole contribution remains. Note that as a results of the image effect the sum of the depolarization factors

$$\begin{aligned} 2\mathrm{{L}}_{\mathrm{{p}}} +\,\mathrm{{L}}_{\mathrm{{z}}} =1+\frac{\mathrm{{B}}_{\mathrm{{sa}}} }{3}\left( {\frac{1}{2}-\frac{\upphi }{\sqrt{2}}} \right) \end{aligned}$$
(A.17)

no longer equals 1. This rule is broken as a result of the image effect.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wormeester, H., Oates, T.W.H. (2013). Thin Films of Nanostructured Noble Metals. In: Losurdo, M., Hingerl, K. (eds) Ellipsometry at the Nanoscale. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33956-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33956-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33955-4

  • Online ISBN: 978-3-642-33956-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics