Skip to main content

Spectroscopic Ellipsometry for Functional Nano-Layers of Flexible Organic Electronic Devices

  • Chapter
  • First Online:
Ellipsometry at the Nanoscale

Abstract

Flexible organic electronic devices (FEDs) will significantly improve and revolutionize several aspects our everyday life. During the last years, there are numerous advances in organic (semiconducting, conducting and insulating), inorganic and hybrid (organic–inorganic) materials that exhibit customized properties and stability, and in the synthesis and preparation methods, which are characterized by a significant amount of multidisciplinarity. The understanding of the optical and electrical properties of these materials as well as their growth mechanisms can improve the functionality and promote the performance of flexible organic electronic devices. Spectroscopic Ellipsometry (SE) is a powerful technique that can be implemented in-situ and ex-situ for the measurement and analysis of the optical response of a wide variety of materials. In this chapter, we will describe briefly some of the advances towards the implementation of SE for the study of state-of-the-art materials (flexible polymer substrates, barrier layers, transparent electrodes) for flexible organic electronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Logothetidis, Polymeric substrates and encapsulation for flexible electronics: Bonding structure, surface modification and functional nanolayer growth. Rev. Adv. Mater. Sci. 10(5), 387–397 (2005)

    Google Scholar 

  2. W.F. Smith, Organic electronics: self assembly is ready to roll. Nat. Nanotechnol. 2, 77–78 (2007)

    Google Scholar 

  3. D.J. Gundlach, Organic electronics: Low power, high impact. Nat. Mater. 6, 173–174 (2007)

    Google Scholar 

  4. A.J. Heeger, Semiconducting and metallic polymers: The fourth generation of polymeric materials. Rev. Mod. Phys. 73, 681–700 (2001)

    Article  Google Scholar 

  5. G. Dennler, C. Lungenschmied, L.C.H. Neugebauer, N.S. Sariciftci, A. Labouret, Flexible, conjugated polymer-fullerene-based bulk-heterojunction solar cells: basics, encapsulation, and integration. J. Mater. Res. 20, 3224–3233 (2005)

    Google Scholar 

  6. H. Nakada, The status of development of Organic Light Emitting Diodes/organic thin-film transistors. J. Photopolym. Sci. Technol. 20(1), 35–38 (2007)

    Article  Google Scholar 

  7. H. Sirringhaus, N. Tessler, R.H. Friend, Integrated optoelectronic devices based on conjugated polymers. Science 280(5370), 1741–1744 (1998)

    Google Scholar 

  8. D. Georgiou et al., Optical properties of hybrid polymers as barrier materials. Appl. Surf. Sci. 255, 8023–8029 (2009)

    Google Scholar 

  9. M. Yanaka, B.M. Henry, A.P. Roberts et al., How cracks in SiOx-coated polyester films affect gas permeation. Thin Solid Films 397, 176–185 (2001)

    Google Scholar 

  10. P. Roberts et al., Gas permeation in silicon-oxide/polymer (SiOx/PET) barrier films: role of the oxide lattice, nano-defects and macro-defects. J. Membr. Sci. 208(1–2), 75–88 (2002)

    Google Scholar 

  11. R. Houbertz et al., Inorganic-organic hybrid materials for application in optical devices. Thin Solid Films, 442(1–2), 194–200 (2003)

    Google Scholar 

  12. S. Amberg-Schwab, U. Weber, A. Burger, S. Nique, R. Xalter, Development of passive and active barrier coatings on the basis of inorganic-organic polymers. Monatshefte Für Chemie 137, 657–666 (2006)

    Article  Google Scholar 

  13. A. Laskarakis, S. Logothetidis, On the optical anisotropy of poly(ethylene terephthalate) and poly(ethylene naphthalate polymeric films by spectroscopic ellipsometry from visible-far ultraviolet to infrared spectral regions. J. Appl. Phys. 99, 066101-1–066101-3 (2006)

    Google Scholar 

  14. A. Laskarakis, S. Logothetidis, Study of the electronic and vibrational properties of poly(ethylene terephthalate) and poly(ethylene naphthalate) films. J. Appl. Phys. 101, 03503-1– 053503-9 (2007)

    Google Scholar 

  15. S. Logothetidis, Towards the optimization of materials and processes for flexible organic electronic devices. Rev. Adv. Mater. Sci. 10, 387 (2005)

    Google Scholar 

  16. S. Logothetidis, A. Laskarakis, Organic against inorganic electrodes grown onto polymer substrates for flexible organic electronics applications. Thin Solid Films 518, 1245–1249 (2008)

    Google Scholar 

  17. S. Logothetidis, Thin Films Handbook: Processing Characterization and Properties (Academic Press, New York, 2001)

    Google Scholar 

  18. A. Laskarakis, S. Logothetidis, M. Gioti, Study of the bonding structure of carbon nitride films by IR spectroscopic ellipsometry. Phys. Rev. B 64, 125419-1–125419-15 (2001)

    Google Scholar 

  19. R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North Holland Publishing, Amsterdam, 1977)

    Google Scholar 

  20. H. Tompkins, E. Irene, Handbook of Ellipsometry (Materials Science and Process Technology) (William Andrew Publishing/Noyes, Norwirtch, 2005)

    Google Scholar 

  21. D. Georgiou, S. Logothetidis, C. Koidis, A. Laskarakis, In-situ and real-time monitoring of high barrier layers growth onto polymeric substrates. Phys. Status Solidi (c) 5, 1–4 (2008)

    Google Scholar 

  22. N. Koch, Organic electronic devices and their functional interfaces. ChemPhysChem 8, 438–1455 (2007)

    Google Scholar 

  23. S.A.C. Gould, D.A. Schiraldi, M.L. Occelli, Analysis of poly(ethylene terephthalate) (PET) films by atomic force microscopy. J. Appl. Polym. Sci. 65, 1237–1243 (1997)

    Article  Google Scholar 

  24. C.W. Tang, Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183 (1986)

    Google Scholar 

  25. J. Zhao et al., 20,000 PERL silicon cells for the ‘1996 world solar challenge’ solar car race. Prog. Photovoltaics, 5(4), 269–276 (1997)

    Google Scholar 

  26. T. Erb et al., Absorption and crystallinity of poly(3-hexylthiophene)/fullerene blends in dependence on annealing temperature. Thin Solid Films 511, 483–485 (2006)

    Google Scholar 

  27. N.S. Sariciftci, Plastic photovoltaic devices. Mater. Today, 7(9), 36–40 (2004)

    Google Scholar 

  28. A.C. Mayer, S.R. Scully, B.E. Hardin, M.W. Rowell, M.D. McGehee, Polymer-based solar cells. Mater. Today, 10(11), 28–33 (2007)

    Google Scholar 

  29. F. Zhang et al., Polymer solar cells based on a low-bandgap fluorene copolymer and a fullerene derivative with photocurrent extended to 850 nm. Adv. Funct. Mater. 15(5), 745–750 (2005)

    Google Scholar 

  30. K.M. Coakley, M.D. McGehee, Conjugated polymer photovoltaic cells. Chem. Mater. 16(23), 4533–4542 (2004)

    Google Scholar 

  31. S.A. McDonald et al., Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4(2), 138–U14 (2005)

    Google Scholar 

  32. V. Coropceanu et al., Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007)

    Google Scholar 

  33. J.Y. Kim et al, Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317(5835), 222–225 (2007)

    Google Scholar 

  34. N. Koch et al., Evidence for temperature-dependent electron band dispersion in pentacene. Phys. Rev. Lett. 96(15), 156803 (2006)

    Google Scholar 

  35. G.N. Gavrila et al., Energy band dispersion in well ordered N, N’-dimethyl-3,4,9,10- perylenetetracarboxylic dlimide films. Appl. Phys. Lett. 85(20), 4657–4659 (2004)

    Google Scholar 

  36. L.V. Keldysh, D.A. Kirzhnits, A.A. Maradudin, The dielectric function of condensed systems (North-Holland Publishing, Amsterdam, 1989)

    Google Scholar 

  37. J.E. Jellison, F.A. Modine, Parameterization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett. 69, 371–373 (1996)

    Google Scholar 

  38. K. Nomura et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488 (2004)

    Google Scholar 

  39. R. Forest, The path to ubiquitous and low cost organic electronic appliances on plastic. Nature 428, 911 (2004)

    Google Scholar 

  40. A. Laskarakis, S. Kassavetis, C. Gravalidis, S. Logothetidis, In situ and real-time optical investigation of nitrogen plasma treatment of polycarbonate. Nucl. Instrum. Methods Phys. Res. B, 268, 460–465 (2010)

    Google Scholar 

  41. A.E. Tonelli, PET versus PEN: What difference can a ring make? Polymer 43, 637–642 (2002)

    Google Scholar 

  42. W. Fix, A. Ullmann, J. Ficker, W. Clemens, Fast polymer integrated circuits. Appl. Phys. Lett. 81, 1735 (2002)

    Google Scholar 

  43. A. Laskarakis, S. Logothetidis, Investigation of the optical anisotropy of PET and PEN films by VIS-FUV to IR spectroscopic ellipsometry. Appl. Surf. Sci. 253, 52–56 2006

    Google Scholar 

  44. A. Laskarakis, M. Gioti, E. Pavlopoulou, A complementary spectroscopic ellipsometry study of PET membranes from IR to Vis-FUV. Macromol. Symp. 205, 95–104 (2004)

    Article  Google Scholar 

  45. C. Charton et al., Development of high barrier films on flexible polymer substrates. Thin Solid Films, 502(1–2), 99–103 (2006)

    Google Scholar 

  46. A. Laskarakis, S. Logothetidis, D. Georgiou, S. Amberg-Schwab, U. Weber, On the influence of silicon oxide nanoparticles on the optical and surface properties of hybrid (inorganic-organic) barrier materials. Thin Solid Films, 517, 6275–6279 (2009)

    Google Scholar 

  47. S. Amberg-Schwab, H. Katschorek, U. Weber, M. Hoffmann, A. Burger, Barrier properties OF inorganic-organic polymers: influence of starting compounds, curing conditions and storage-scaling-up to industrial application. J. Sol-Gel Sci. Technol. 19(1–3), 125–129 (2000)

    Google Scholar 

  48. K. Haas, S. Amberg-Schwab, K. Rose, G. Schottner, Functionalized coatings based on inorganic-organic polymers (ORMOCER (R) s) and their combination with vapor deposited inorganic thin films. Surf. Coat. Technol. 111(1), 72–79 (1999)

    Google Scholar 

  49. A. Laskarakis, D. Georgiou, S. Logothetidis, Real-time optical modelling and investigation of inorganic nano-layer growth onto flexible polymeric substrates. Mater. Sci. Eng. B 166, 7–13 (2009)

    Article  Google Scholar 

  50. A.N. Banerjee et al., Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique. Thin Solid Films 496(1), 112–116 (2006)

    Google Scholar 

  51. M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis, G. Kiriakidis, ZnO transparent thin films for gas sensor applications. Thin Solid Films 515(2), 551–554 (2006)

    Article  Google Scholar 

  52. Ch. Koidis, S. Logothetidis, D. Georgiou, Growth, optical and nanostructural properties of magnetron sputtered ZnO thin films deposited on polymeric substrates. Phys. Status Solidi A, 205, 1988–1992 (2008)

    Google Scholar 

  53. A.L. Dawar, A.K. Jain, C. Jagadish, H.L. Hartnagel, Semiconducting Transparent Thin Films (Institute of Physics Publishing, Bristol, Philadelphia, 1995)

    Google Scholar 

  54. H. Kim et al., Indium tin oxide thin films for organic light-emitting devices. Appl. Phys. Lett. 74(23), 3444–3446 (1999)

    Article  Google Scholar 

  55. H. Kim et al., Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices. J. Appl. Phys. 86(11), 6451–6461 (1999)

    Google Scholar 

  56. E. Fortunato, A. Goncalves, A. Marques, H. Aguas, L. Pereira, I. Ferreira, R. Martins Pimentel, Thin Solid Films 487, 212 (2005)

    Google Scholar 

  57. Ch. Koidis, S. Logothetidis, A. Laskarakis, I. Tsiaoussis, N. Frangis, Thin film and interface properties during ZnO deposition onto high-barrier hybrid/PET flexible substrates. Micron 40, 130–134 (2009)

    Google Scholar 

  58. M. Garganourakis et al., Deposition and characterization of PEDOT/ZnO layers onto PET substrates. Thin Solid Films, 517(23), 6409–6413 (2009)

    Google Scholar 

  59. L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO—nanostructures, defects, and devices. Mater. Today 10(5), 40–48 (2007)

    Google Scholar 

  60. C. Gravalidis, A. Laskarakis, S. Logothetidis, Fine tuning of PEDOT electronic properties using solvents. Eur. Phys. J. Appl. Phys. 46, 12505 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff of the Lab for Thin Films, Nanosystems and Nanometrology (LTFN) (http://ltfn.physics.auth.gr) for their support and contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stergios Logothetidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Logothetidis, S., Laskarakis, A. (2013). Spectroscopic Ellipsometry for Functional Nano-Layers of Flexible Organic Electronic Devices. In: Losurdo, M., Hingerl, K. (eds) Ellipsometry at the Nanoscale. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33956-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33956-1_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33955-4

  • Online ISBN: 978-3-642-33956-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics