Skip to main content

Clostridial Neurotoxin Light Chains: Devices for SNARE Cleavage Mediated Blockade of Neurotransmission

  • Chapter
  • First Online:
Botulinum Neurotoxins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 364))

Abstract

Seven serologically distinct botulinum neurotoxins and tetanus neurotoxin which cause the diseases botulism and tetanus constitute the clostridial neurotoxin family. Like many other bacterial protein toxins they exhibit a modular structure. One domain mediates highly specific binding to target cells and endocytosis, while the second translocates the third, a catalytic domain across the endosomal membrane to the target cell cytosol. In case of Clostridial neurotoxins (CNT), the latter acts as extremely specific Zn2+-dependent metalloproteinase. The various serotypes proteolyze each one particular peptide bond in one of the three SNARE proteins, which are the core of the membrane fusion apparatus for synaptic vesicles. SNARE cleavage causes the blockade of neurotransmitter release. This chapter details the molecular basis for the highly selective substrate recognition and cleavage mechanism of CNT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BoNT:

botulinum neurotoxin

BoNT/X:

serotype X of BoNT, X = A–G

BoNT/XY:

subtype Y of serotype BoNT/X, Y = 1–8

CNT:

clostridial neurotoxins

HC/X:

heavy chain of BoNT serotype X/TeNT

HCX:

50 kDa cell binding fragment of BoNT/TeNT

HNX:

50 kDa translocation domain of BoNT/TeNT

LC/X:

light chain, catalytic domain of BoNT serotype X/TeNT

NSF:

N-ethylmaleimide-sensitive factor

SNAP:

soluble NSF adapter protein

SNAP-25:

synaptosomal associated protein of 25 kDa

SNAP-23:

23 kDa homolog of SNAP-25

SNARE:

soluble N-ethylmaleimide-sensitive factor attachment protein receptor

syntaxin-X:

Isoform X of syntaxin, X = 1–19

TI-VAMP:

tetanus neurotoxin insensitive VAMP

TeNT:

tetanus neurotoxin

VAMP:

vesicle-associated membrane protein

References

  • Agarwal R, Swaminathan S (2008) SNAP-25 substrate peptide (residues 180–183) binds to but bypasses cleavage by catalytically active Clostridium botulinum neurotoxin E. J Biol Chem 283:25944–25951

    Article  PubMed  CAS  Google Scholar 

  • Agarwal R, Eswaramoorthy S, Kumaran D et al (2004) Structural analysis of botulinum neurotoxin type E catalytic domain and its mutant Glu212→Gln reveals the pivotal role of the Glu212 carboxylate in the catalytic pathway. Biochemistry 43:6637–6644

    Article  PubMed  CAS  Google Scholar 

  • Agarwal R, Binz T, Swaminathan S (2005) Analysis of active site residues of botulinum neurotoxin E by mutational, functional, and structural studies: Glu335Gln is an apoenzyme. Biochemistry 44:8291–8302

    Article  PubMed  CAS  Google Scholar 

  • Agarwal R, Schmidt JJ, Stafford RG et al (2009) Mode of VAMP substrate recognition and inhibition of Clostridium botulinum neurotoxin F. Nat Struct Mol Biol 16:789–794

    Article  PubMed  CAS  Google Scholar 

  • Ahmed SA, Olson MA, Ludivico ML et al (2008) Identification of residues surrounding the active site of type A botulinum neurotoxin important for substrate recognition and catalytic activity. Protein J 27:151–162

    Article  PubMed  CAS  Google Scholar 

  • Ahnert-Hilger G (2012) Synaptic vesicle proteins: targets and routes for botulinum neurotoxins. doi:10.1007/978-3-642-33570-9_8

  • Baumert M, Maycox PR, Navone F et al (1989) Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. EMBO J 8:379–384

    PubMed  CAS  Google Scholar 

  • Bennett MK, Calakos N, Scheller RH (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257:255–259

    Article  PubMed  CAS  Google Scholar 

  • Bigalke H (2012) Botulinum toxin: application, safety, and limitations doi:10.1007/978-3-642-33570-9_14

  • Binz T, Kurazono H, Wille M et al (1990) The complete sequence of botulinum neurotoxin type A and comparison with other clostridial neurotoxins. J Biol Chem 265:9153–9158

    PubMed  CAS  Google Scholar 

  • Binz T, Blasi J, Yamasaki S et al (1994) Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem 269:1617–1620

    PubMed  CAS  Google Scholar 

  • Binz T, Bade S, Rummel A et al (2002) Arg(362) and Tyr(365) of the botulinum neurotoxin type A light chain are involved in transition state stabilization. Biochemistry 41:1717–1723

    Article  PubMed  CAS  Google Scholar 

  • Blasi J, Chapman ER, Link E et al (1993a) Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365:160–163

    Article  PubMed  CAS  Google Scholar 

  • Blasi J, Chapman ER, Yamasaki S et al (1993b) Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J 12:4821–4828

    PubMed  CAS  Google Scholar 

  • Breidenbach MA, Brunger AT (2004) Substrate recognition strategy for botulinum neurotoxin serotype A. Nature 432:925–929

    Article  PubMed  CAS  Google Scholar 

  • Breidenbach MA, Brunger AT (2005) 2.3 A crystal structure of tetanus neurotoxin light chain. Biochemistry 44:7450–7457

    Article  PubMed  CAS  Google Scholar 

  • Burnett JC, Ruthel G, Stegmann CM et al (2007) Inhibition of metalloprotease botulinum serotype A from a pseudo-peptide binding mode to a small molecule that is active in primary neurons. J Biol Chem 282:5004–5014

    Article  PubMed  CAS  Google Scholar 

  • Chaddock J (2012) Transforming the domain structure of botulinum neurotoxins into novel therapeutics. doi:10.1007/978-3-642-33570-9_13

  • Chaineau M, Danglot L, Galli T (2009) Multiple roles of the vesicular-SNARE TI-VAMP in post-Golgi and endosomal trafficking. FEBS Lett 583:3817–3826

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Barbieri JT (2006) Unique substrate recognition by botulinum neurotoxins serotypes A and E. J Biol Chem 281:10906–10911

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Barbieri JT (2007) Multi-pocket recognition of SNAP-25 by botulinum neurotoxin serotype E. J Biol Chem 282:25540–25547

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Barbieri JT (2009) Engineering botulinum neurotoxin to extend therapeutic intervention. Proc Natl Acad Sci U S A 106:9180–9184

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Wan HY (2011) Molecular mechanisms of substrate recognition and specificity of botulinum neurotoxin serotype F. Biochem J 433:277–284

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Kim JJ, Barbieri JT (2007) Mechanism of substrate recognition by botulinum neurotoxin serotype A. J Biol Chem 282:9621–9627

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Hall C, Barbieri JT (2008) Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. J Biol Chem 283:21153–21159

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Karalewitz AP, Barbieri JT (2012) Insights into the different catalytic activities of Clostridium neurotoxins. Biochemistry 51:3941–3947

    Article  PubMed  CAS  Google Scholar 

  • Cornille F, Martin L, Lenoir C et al (1997) Cooperative exosite-dependent cleavage of synaptobrevin by tetanus toxin light chain. J Biol Chem 272:3459–3464

    Article  PubMed  CAS  Google Scholar 

  • Davletov B, Bajohrs M, Binz T (2005) Beyond BOTOX: advantages and limitations of individual botulinum neurotoxins. Trends Neurosci 28:446–452

    Article  PubMed  CAS  Google Scholar 

  • Evans ER, Sutton JM, Gravett A et al (2005) Analysis of the substrate recognition domain determinants of Botulinum type B toxin using phage display. Toxicon 46:446–453

    Article  PubMed  CAS  Google Scholar 

  • Fang H, Luo W, Henkel J et al (2006) A yeast assay probes the interaction between botulinum neurotoxin serotype B and its SNARE substrate. Proc Natl Acad Sci U S A 103:6958–6963

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Montal M (2007) Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes. Proc Natl Acad Sci U S A 104:10447–10452

    Article  PubMed  CAS  Google Scholar 

  • Fischer A (2012) Synchronized chaperone function of botulinum neurotoxin domains mediates light chain translocation into neurons. doi:10.1007/978-3-642-33570-9_6

  • Foran P, Shone CC, Dolly JO (1994) Differences in the protease activities of tetanus and botulinum B toxins revealed by the cleavage of vesicle-associated membrane protein and various sized fragments. Biochemistry 33:15365–15374

    Article  PubMed  CAS  Google Scholar 

  • Foran P, Lawrence GW, Shone CC et al (1996) Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. Biochemistry 35:2630–2636

    Article  PubMed  CAS  Google Scholar 

  • Fu Z, Chen S, Baldwin MR et al (2006) Light chain of botulinum neurotoxin serotype A: structural resolution of a catalytic intermediate. Biochemistry 45:8903–8911

    Article  PubMed  CAS  Google Scholar 

  • Gill DM (1982) Bacterial toxins: a table of lethal amounts. Microbiol Rev 46:86–94

    PubMed  CAS  Google Scholar 

  • Hangauer DG, Monzingo AF, Matthews BW (1984) An interactive computer graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides. Biochemistry 23:5730–5741

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, McMahon H, Yamasaki S et al (1994) Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J 13:5051–5061

    PubMed  CAS  Google Scholar 

  • Hill KK , Smith TJ (2012) Genetic diversity within clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. doi:10.1007/978-3-642-33570-9_1

  • Henkel JS, Jacobson M, Tepp W et al (2009) Catalytic properties of botulinum neurotoxin subtypes A3 and A4. Biochemistry 48:2522–2528

    Article  PubMed  CAS  Google Scholar 

  • Hooper NM (1994) Families of zinc metalloproteases. FEBS Lett 354:1–6

    Article  PubMed  CAS  Google Scholar 

  • Hua SY, Charlton MP (1999) Activity-dependent changes in partial VAMP complexes during neurotransmitter release. Nat Neurosci 2:1078–1083

    Article  PubMed  CAS  Google Scholar 

  • Inoue A, Obata K, Akagawa K (1992) Cloning and sequence analysis of cDNA for a neuronal cell membrane antigen, HPC-1. J Biol Chem 267:10613–10619

    PubMed  CAS  Google Scholar 

  • Jahn R, Scheller RH (2006) SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643

    Article  PubMed  CAS  Google Scholar 

  • Jin R, Sikorra S, Stegmann CM et al (2007) Structural and biochemical studies of botulinum neurotoxin serotype C1 light chain protease: implications for dual substrate specificity. Biochemistry 46:10685–10693

    Article  PubMed  CAS  Google Scholar 

  • Jongeneel CV, Bouvier J, Bairoch A (1989) A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett 242:211–214

    Article  PubMed  CAS  Google Scholar 

  • Kalb SR, Baudys J, Egan C et al (2011) Different substrate recognition requirements for cleavage of synaptobrevin-2 by Clostridium baratii and Clostridium botulinum type F neurotoxins. Appl Environ Microbiol 77:1301–1308

    Article  PubMed  CAS  Google Scholar 

  • Kalb SR, Baudys J, Webb RP et al (2012) Discovery of a novel enzymatic cleavage site for botulinum neurotoxin F5. FEBS Lett 586:109–115

    CAS  Google Scholar 

  • Koriazova LK, Montal M (2003) Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat Struct Biol 10:13–18

    Article  PubMed  CAS  Google Scholar 

  • Kumaran D, Rawat R, Ahmed SA et al (2008a) Substrate binding mode and its implication on drug design for botulinum neurotoxin A. PLoS Pathog 4:e1000165

    Article  PubMed  Google Scholar 

  • Kumaran D, Rawat R, Ludivico ML et al (2008b) Structure- and substrate-based inhibitor design for Clostridium botulinum neurotoxin serotype A. J Biol Chem 283:18883–18891

    Article  PubMed  CAS  Google Scholar 

  • Lacy DB, Tepp W, Cohen AC et al (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5:898–902

    Article  PubMed  CAS  Google Scholar 

  • Li L, Binz T, Niemann H et al (2000) Probing the mechanistic role of glutamate residue in the zinc-binding motif of type A botulinum neurotoxin light chain. Biochemistry 39:2399–2405

    Article  PubMed  CAS  Google Scholar 

  • Matthews BW (1988) Structural basis of the action of thermolysin and related zinc peptidases. Acc Chem Res 21:333–340

    Article  CAS  Google Scholar 

  • McMahon HT, Ushkaryov YA, Edelmann L et al (1993) Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature 364:346–349

    Article  PubMed  CAS  Google Scholar 

  • Osen-Sand A, Staple JK, Naldi E et al (1996) Common and distinct fusion proteins in axonal growth and transmitter release. J Comp Neurol 367:222–234

    Article  PubMed  CAS  Google Scholar 

  • Oyler GA, Higgins GA, Hart RA et al (1989) The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol 109:3039–3052

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini LL, O’Connor V, Betz H (1994) Fusion complex formation protects synaptobrevin against proteolysis by tetanus toxin light chain. FEBS Lett 353:319–323

    Article  PubMed  CAS  Google Scholar 

  • Pellizzari R, Rossetto O, Lozzi L et al (1996) Structural determinants of the specificity for synaptic vesicle-associated membrane protein/synaptobrevin of tetanus and botulinum type B and G neurotoxins. J Biol Chem 271:20353–20358

    Article  PubMed  CAS  Google Scholar 

  • Pellizzari R, Mason S, Shone CC et al (1997) The interaction of synaptic vesicle-associated membrane protein/synaptobrevin with botulinum neurotoxins D and F. FEBS Lett 409:339–342

    Article  PubMed  CAS  Google Scholar 

  • Pier CL, Tepp WH, Bradshaw M et al (2008) Recombinant holotoxoid vaccine against botulism. Infect Immun 76:437–442

    Article  PubMed  CAS  Google Scholar 

  • Raphael BH, Choudoir MJ, Luquez C et al (2010) Sequence diversity of genes encoding botulinum neurotoxin type F. Appl Environ Microbiol 76:4805–4812

    Article  PubMed  CAS  Google Scholar 

  • Rawlings ND, Barrett AJ (1995) Evolutionary families of metallopeptidases. Methods Enzymol 248:183–228

    Article  PubMed  CAS  Google Scholar 

  • Rossetto O, Caccin P, Rigoni M et al (2001) Active-site mutagenesis of tetanus neurotoxin implicates TYR-375 and GLU-271 in metalloproteolytic activity. Toxicon 39:1151–1159

    Article  PubMed  CAS  Google Scholar 

  • Rummel A (2012) Double receptor anchorage of botulinum neurotoxins accounts for their exquisite neurospecificity. doi:10.1007/978-3-642-33570-9_4

  • Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27:157–162

    Article  PubMed  CAS  Google Scholar 

  • Schiavo G, Rossetto O, Santucci A et al (1992a) Botulinum neurotoxins are zinc proteins. J Biol Chem 267:23479–23483

    PubMed  CAS  Google Scholar 

  • Schiavo G, Poulain B, Rossetto O et al (1992b) Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depend on zinc. EMBO J 11:3577–3583

    PubMed  CAS  Google Scholar 

  • Schiavo G, Benfenati F, Poulain B et al (1992c) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835

    Article  PubMed  CAS  Google Scholar 

  • Schiavo G, Rossetto O, Catsicas S et al (1993a) Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J Biol Chem 268:23784–23787

    PubMed  CAS  Google Scholar 

  • Schiavo G, Shone CC, Rossetto O et al (1993b) Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J Biol Chem 268:11516–11519

    PubMed  CAS  Google Scholar 

  • Schiavo G, Santucci A, Dasgupta BR et al (1993c) Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett 335:99–103

    Article  PubMed  CAS  Google Scholar 

  • Schiavo G, Shone CC, Bennett MK et al (1995) Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J Biol Chem 270:10566–10570

    Article  PubMed  CAS  Google Scholar 

  • Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766

    PubMed  CAS  Google Scholar 

  • Schiavo G, Bercsenyi K, Giribaldi F (2012) The Elusive Compass of Clostridial Neurotoxins: deciding when and where to go? doi:10.1007/978-3-642-33570-9_5

  • Schmidt JJ, Bostian KA (1997) Endoproteinase activity of type A botulinum neurotoxin: substrate requirements and activation by serum albumin. J Protein Chem 16:19–26

    Article  PubMed  CAS  Google Scholar 

  • Schmidt JJ, Stafford RG (2005) Botulinum neurotoxin serotype F: identification of substrate recognition requirements and development of inhibitors with low nanomolar affinity. Biochemistry 44:4067–4073

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker CP, Oyler GA (2012) Persistence of botulinum neurotoxin inactivation of nerve function. doi:10.1007/978-3-642-33570-9_9

  • Shone CC, Roberts AK (1994) Peptide substrate specificity and properties of the zinc-endopeptidase activity of botulinum type B neurotoxin. Eur J Biochem 225:263–270

    Article  PubMed  CAS  Google Scholar 

  • Shone CC, Quinn CP, Wait R et al (1993) Proteolytic cleavage of synthetic fragments of vesicle-associated membrane protein, isoform-2 by botulinum type B neurotoxin. Eur J Biochem 217:965–971

    Article  PubMed  CAS  Google Scholar 

  • Sikorra S, Henke T, Swaminathan S et al (2006) Identification of the amino acid residues rendering TI-VAMP insensitive toward botulinum neurotoxin B. J Mol Biol 357:574–582

    Article  PubMed  CAS  Google Scholar 

  • Sikorra S, Henke T, Galli T et al (2008) Substrate recognition mechanism of VAMP/synaptobrevin-cleaving clostridial neurotoxins. J Biol Chem 283:21145–21152

    Article  PubMed  CAS  Google Scholar 

  • Silvaggi NR, Boldt GE, Hixon MS et al (2007) Structures of Clostridium botulinum neurotoxin serotype A light chain complexed with small-molecule inhibitors highlight active-site flexibility. Chem Biol 14:533–542

    Article  PubMed  CAS  Google Scholar 

  • Silvaggi NR, Wilson D, Tzipori S et al (2008) Catalytic features of the botulinum neurotoxin A light chain revealed by high resolution structure of an inhibitory peptide complex. Biochemistry 47:5736–5745

    Article  PubMed  CAS  Google Scholar 

  • Sutton RB, Fasshauer D, Jahn R et al (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347–353

    Article  PubMed  CAS  Google Scholar 

  • Thompson DE, Brehm JK, Oultram JD et al (1990) The complete amino acid sequence of the Clostridium botulinum type A neurotoxin, deduced by nucleotide sequence analysis of the encoding gene. Eur J Biochem 189:73–81

    Article  PubMed  CAS  Google Scholar 

  • Trimble WS, Cowan DM, Scheller RH (1988) VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc Natl Acad Sci U S A 85:4538–4542

    Article  PubMed  CAS  Google Scholar 

  • Vaidyanathan VV, Yoshino K, Jahnz M et al (1999) Proteolysis of SNAP-25 isoforms by botulinum neurotoxin types A, C, and E: domains and amino acid residues controlling the formation of enzyme-substrate complexes and cleavage. J Neurochem 72:327–337

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Zhang Z, Dong M et al (2011) Syntaxin requirement for Ca2+-triggered exocytosis in neurons and endocrine cells demonstrated with an engineered neurotoxin. Biochemistry 50:2711–2713

    Article  PubMed  CAS  Google Scholar 

  • Washbourne P, Pellizzari R, Baldini G et al (1997) Botulinum neurotoxin types A and E require the SNARE motif in SNAP-25 for proteolysis. FEBS Lett 418:1–5

    Article  PubMed  CAS  Google Scholar 

  • Webb RP, Smith TJ, Wright P et al (2009) Production of catalytically inactive BoNT/A1 holoprotein and comparison with BoNT/A1 subunit vaccines against toxin subtypes A1, A2, and A3. Vaccine 27:4490–4497

    Article  PubMed  CAS  Google Scholar 

  • Wictome M, Rossetto O, Montecucco C et al (1996) Substrate residues N-terminal to the cleavage site of botulinum type B neurotoxin play a role in determining the specificity of its endopeptidase activity. FEBS Lett 386:133–136

    Article  PubMed  CAS  Google Scholar 

  • Williamson LC, Halpern JL, Montecucco C et al (1996) Clostridial neurotoxins and substrate proteolysis in intact neurons: botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa. J Biol Chem 271:7694–7699

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Ida T, Tsutsuki H et al (2012) Specificity of botulinum protease for human VAMP family proteins. Microbiol Immunol 56:245–253

    Article  PubMed  Google Scholar 

  • Yamasaki S, Binz T, Hayashi T et al (1994a) Botulinum neurotoxin type G proteolyses the Ala81-Ala82 bond of rat synaptobrevin 2. Biochem Biophys Res Commun 200:829–835

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki S, Baumeister A, Binz T et al (1994b) Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. J Biol Chem 269:12764–12772

    PubMed  CAS  Google Scholar 

  • Zuniga JE, Schmidt JJ, Fenn T et al (2008) A potent peptidomimetic inhibitor of botulinum neurotoxin serotype A has a very different conformation than SNAP-25 substrate. Structure 16:1588–1597

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Andreas Rummel for critically reviewing the manuscript. This work was supported by grant BI 660/3-1from the Deutsche Forschungsgemeinschaft to T. B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Binz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Binz, T. (2012). Clostridial Neurotoxin Light Chains: Devices for SNARE Cleavage Mediated Blockade of Neurotransmission. In: Rummel, A., Binz, T. (eds) Botulinum Neurotoxins. Current Topics in Microbiology and Immunology, vol 364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33570-9_7

Download citation

Publish with us

Policies and ethics