Skip to main content

Span Programs and Quantum Algorithms for st-Connectivity and Claw Detection

  • Conference paper
Algorithms – ESA 2012 (ESA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7501))

Included in the following conference series:

Abstract

We use span programs to develop quantum algorithms for several graph problems. We give an algorithm that uses \(O(n \sqrt d)\) queries to the adjacency matrix of an n-vertex graph to decide if vertices s and t are connected, under the promise that they either are connected by a path of length at most d, or are disconnected. We also give O(n)-query algorithms that decide if a graph contains as a subgraph a path, a star with two subdivided legs, or a subdivided claw. These algorithms can be implemented time efficiently and in logarithmic space. One of the main techniques is to modify the natural st-connectivity span program to drop along the way “breadcrumbs,” which must be retrieved before the path from s is allowed to enter t.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ambainis, A., Childs, A.M., Reichardt, B.W., Špalek, R., Zhang, S.: Any AND-OR formula of size N can be evaluated in time N 1/2 + o(1) on a quantum computer. SIAM J. Comput. 39(6), 2513–2530 (2010); Earlier version in FOCS 2007

    Google Scholar 

  2. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: Proc. 20th IEEE FOCS, pp. 218–223 (1979)

    Google Scholar 

  3. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Computing 37(1), 210–239 (2007), arXiv:quant-ph/0311001

    Article  MathSciNet  MATH  Google Scholar 

  4. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42, 844–856 (1995); Earlier version in STOC 1994

    Article  MathSciNet  MATH  Google Scholar 

  5. Belovs, A.: Span-program-based quantum algorithm for the rank problem (2011), arXiv:1103.0842

    Google Scholar 

  6. Belovs, A.: Learning-graph-based quantum algorithm for k-distinctness. To Appear in FOCS 2012 (2012), arXiv:1205.1534

    Google Scholar 

  7. Belovs, A.: Span programs for functions with constant-sized 1-certificates. In: Proc. 44th ACM STOC, pp. 77–84 (2012), arXiv:1105.4024

    Google Scholar 

  8. Belovs, A., Lee, T.: Quantum algorithm for k-distinctness with prior knowledge on the input (2011), arXiv:1108.3022

    Google Scholar 

  9. Belovs, A., Reichardt, B.W.: Span programs and quantum algorithms for st-connectivity and claw detection (2012), arXiv:1203.2603

    Google Scholar 

  10. Childs, A.M., Kothari, R.: Quantum query complexity of minor-closed graph properties. In: Proc. 28th STACS, pp. 661–672 (2011), arXiv:1011.1443

    Google Scholar 

  11. Dürr, C., Heiligman, M., Høyer, P., Mhalla, M.: Quantum Query Complexity of Some Graph Problems. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 481–493. Springer, Heidelberg (2004), arXiv:quant-ph/0401091

    Chapter  Google Scholar 

  12. Doyle, P.G., Laurie Snell, J.: Random Walks and Electric Networks. Carus Mathematical Monographs, vol. 22. Mathematical Association of America (1984), arXiv:math/0001057 [math.PR]

    Google Scholar 

  13. Gavinsky, D., Ito, T.: A quantum query algorithm for the graph collision problem (2012), arXiv:1204.1527

    Google Scholar 

  14. Kimmel, S.: Quantum adversary (upper) bound (2011), arXiv:1101.0797

    Google Scholar 

  15. Karchmer, M., Wigderson, A.: On span programs. In: Proc. 8th IEEE Symp. Structure in Complexity Theory, pp. 102–111 (1993)

    Google Scholar 

  16. Lee, T., Mittal, R., Reichardt, B.W., Špalek, R., Szegedy, M.: Quantum query complexity of state conversion. In: Proc. 52nd IEEE FOCS, pp. 344–353 (2011), arXiv:1011.3020

    Google Scholar 

  17. Lee, T., Magniez, F., Santha, M.: A learning graph based quantum query algorithm for finding constant-size subgraphs (2011), arXiv:1109.5135

    Google Scholar 

  18. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. In: Proc. 16th ACM-SIAM Symp. on Discrete Algorithms, SODA (2005), arXiv:quant-ph/0310134

    Google Scholar 

  19. Reingold, O.: Undirected ST-connectivity in log-space. In: Proc. 37th ACM STOC, pp. 376–385 (2005)

    Google Scholar 

  20. Reichardt, B.W.: Span programs and quantum query complexity: The general adversary bound is nearly tight for every boolean function. Extended Abstract in Proc. 50th IEEE FOCS, pp. 544–551 (2009), arXiv:0904.2759

    Google Scholar 

  21. Reichardt, B.W.: Faster quantum algorithm for evaluating game trees. In: Proc. 22nd ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 546–559 (2011), arXiv:0907.1623

    Google Scholar 

  22. Reichardt, B.W.: Reflections for quantum query algorithms. In: Proc. 22nd ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 560–569 (2011), arXiv:1005.1601

    Google Scholar 

  23. Reichardt, B.W.: Span-program-based quantum algorithm for evaluating unbalanced formulas. In: 6th Conf. on Theory of Quantum Computation, Communication and Cryptography, TQC (2011), arXiv:0907.1622

    Google Scholar 

  24. Robertson, N., Seymour, P.D.: Graph minors XX. Wagner’s conjecture. J. Combin. Theory Ser. B 92, 325–357 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Reichardt, B.W., Špalek, R.: Span-program-based quantum algorithm for evaluating formulas. In: Proc. 40th ACM STOC, pp. 103–112 (2008), arXiv:0710.2630

    Google Scholar 

  26. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proc. 45th IEEE FOCS, pp. 32–41 (2004)

    Google Scholar 

  27. Williams, V.V., Williams, R.: Subcubic equivalences between path, matrix, and triangle problems. In: Proc. 51st IEEE FOCS, pp. 645–654 (2010)

    Google Scholar 

  28. Zhu, Y.: Quantum query complexity of subgraph containment with constant-sized certificates (2011), arXiv:1109.4165

    Google Scholar 

  29. Zhan, B., Kimmel, S., Hassidim, A.: Super-polynomial quantum speed-ups for boolean evaluation trees with hidden structure (2011), arXiv:1101.0796

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belovs, A., Reichardt, B.W. (2012). Span Programs and Quantum Algorithms for st-Connectivity and Claw Detection. In: Epstein, L., Ferragina, P. (eds) Algorithms – ESA 2012. ESA 2012. Lecture Notes in Computer Science, vol 7501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33090-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33090-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33089-6

  • Online ISBN: 978-3-642-33090-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics