Skip to main content

MEG in Epilepsy and Pre-surgical Functional Mapping

  • Chapter
  • First Online:
Magnetoencephalography

Abstract

Magnetoencephalography (MEG) is routinely used in pre-surgical evaluation of epilepsy. Magnetic source imaging (MSI) of epileptic spikes provides additional information to those provided by other non-invasive measures, including fluorodeoxyglucose-positron emission tomography (FDG-PET) and ictal single-photon emission computed tomography (SPECT), especially in neocortical epilepsy and in MRI-negative epilepsy. MSI may guide additional electrode coverage for intracranial EEG and area of resection when planning surgery; both of these approaches are associated with better seizure outcome. Mono-focal spike localization strongly indicates the epileptogenic zone. Complete removal of the MEG focus often results in the patient being seizure free, post-operatively. Similarities and differences between MEG and EEG should be well recognized when using MEG. Although the overall sensitivity of MEG to epileptic spikes is similar to that of EEG, such sensitivity can depend primarily on the orientation of equivalent current dipoles (ECD) of spikes. Favorable areas for MEG include the orbito-frontal, opercular, interhemispheric, temporo-lateral, and rolandic regions. MEG is less sensitive to deep regions, such as mesial temporal structures. MEG is also utilized for functional brain mapping. Somatosensory evoked fields to median nerve stimulation lead to an accurate, within a few millimeters, identification of the central sulcus. MEG analysis of event-related potentials or event-related de/synchronization in response to language tasks provides more than 80 % sensitivity and specificity in language lateralization for intra-carotid amobarbital procedures. MEG is a non-invasive alternative for pre-surgical determination of the language-dominant hemisphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abou-Khalil B (2007) An update on determination of language dominance in screening for epilepsy surgery: the Wada test and newer noninvasive alternatives. Epilepsia 48:442–455

    Google Scholar 

  • Agirre-Arrizubieta Z, Huiskamp GJM, Ferrier CH et al (2009) Interictal magnetoencephalography and the irritative zone in the electrocorticogram. Brain 132:3060–3071

    Google Scholar 

  • Assaf BA, Karkar KM, Laxer KD et al (2003) Ictal magnetoencephalography in temporal and extratemporal lobe epilepsy. Epilepsia 44:1320–1327

    Google Scholar 

  • Bagić AI (2011) Disparities in clinical magnetoencephalography practice in the United States: a survey-based appraisal. J Clin Neurophysiol 28:341–347

    Google Scholar 

  • Bagic A, Funke ME, Ebersole J (2009) American Clinical MEG Society (ACMEGS) position statement: the value of magnetoencephalography (MEG)/magnetic source imaging (MSI) in noninvasive presurgical evaluation of patients with medically intractable localization-related epilepsy. J Clin Neurophysiol 26:290–293

    Google Scholar 

  • Bagić AI, Barkley GL, Rose DF, Ebersole JS (2011a) American clinical magnetoencephalography society clinical practice guideline 4: qualifications of MEG-EEG personnel. J Clin Neurophysiol 28:364–365

    Google Scholar 

  • Bagić AI, Knowlton RC, Rose DF, Ebersole JS (2011b) American clinical magnetoencephalography society clinical practice guideline 3: MEG-EEG reporting. J Clin Neurophysiol 28:362–363

    Google Scholar 

  • Bagić AI, Knowlton RC, Rose DF, Ebersole JS (2011c) American clinical magnetoencephalography society clinical practice guideline 1: recording and analysis of spontaneous cerebral activity. J Clin Neurophysiol 28:348–354

    Google Scholar 

  • Balakrishnan G, Grover KM, Mason K et al (2007) A retrospective analysis of the effect of general anesthetics on the successful detection of interictal epileptiform activity in magnetoencephalography. Anesth Analg 104:1493–1497

    Google Scholar 

  • Barkley GL, Baumgartner C (2003) MEG and EEG in epilepsy. J Clin Neurophysiol 20:163–178

    Google Scholar 

  • Barth DS (1993) The neurophysiological basis of epileptiform magnetic fields and localization of neocortical sources. J Clin Neurophysiol 10:99–107

    Google Scholar 

  • Bast T, Ramantani G, Boppel T et al (2005) Source analysis of interictal spikes in polymicrogyria: loss of relevant cortical fissures requires simultaneous EEG to avoid MEG misinterpretation. Neuroimage 25:1232–1241

    Google Scholar 

  • Bast T, Wright T, Boor R et al (2007) Combined EEG and MEG analysis of early somatosensory evoked activity in children and adolescents with focal epilepsies. Clin Neurophysiol 118:1721–1735

    Google Scholar 

  • Baumgartner C, Pataraia E (2006) Revisiting the role of magnetoencephalography in epilepsy. Curr Opin Neurol 19:181–186

    Google Scholar 

  • Berger MS, Cohen WA, Ojemann GA (1990) Correlation of motor cortex brain mapping data with magnetic resonance imaging. J Neurosurg 72:383–387

    Google Scholar 

  • Bowyer SM, Mason K, Tepley N et al (2003) Magnetoencephalographic validation parameters for clinical evaluation of interictal epileptic activity. J Clin Neurophysiol 20:87–93

    Google Scholar 

  • Bowyer SM, Moran JE, Mason KM et al (2004) MEG localization of language-specific cortex utilizing MR-FOCUSS. Neurology 62:2247–2255

    Google Scholar 

  • Bowyer SM, Moran JE, Weiland BJ et al (2005) Language laterality determined by MEG mapping with MR-FOCUSS. Epilepsy Behav 6:235–241

    Google Scholar 

  • Burch J, Marson A, Beyer F et al (2012) Dilemmas in the interpretation of diagnostic accuracy studies on presurgical workup for epilepsy surgery. Epilepsia 53:1294–1302

    Google Scholar 

  • Burgess RC, Barkley GL, Bagić AI (2011a) Turning a new page in clinical magnetoencephalography: practicing according to the first clinical practice guidelines. J Clin Neurophysiol 28:336–340

    Google Scholar 

  • Burgess RC, Funke ME, Bowyer SM et al (2011b) American clinical magnetoencephalography society clinical practice guideline 2: presurgical functional brain mapping using magnetic evoked fields. J Clin Neurophysiol 28:355–361

    Google Scholar 

  • Carrette E, De Tiège X, Op De Beeck M et al (2011) Magnetoencephalography in epilepsy patients carrying a vagus nerve stimulator. Epilepsy Res 93:44–52

    Google Scholar 

  • Chang EF, Nagarajan SS, Mantle M et al (2009) Magnetic source imaging for the surgical evaluation of electroencephalography-confirmed secondary bilateral synchrony in intractable epilepsy. J Neurosurg 111:1248–1256

    Google Scholar 

  • Colon AJ, Ossenblok P, Nieuwenhuis L et al (2009) Use of routine MEG in the primary diagnostic process of epilepsy. J Clin Neurophysiol 26:326–332

    Google Scholar 

  • De Jongh A, De Munck JC, Gonçalves SI, Ossenblok P (2005) Differences in MEG/EEG epileptic spike yields explained by regional differences in signal-to-noise ratios. J Clin Neurophysiol 22:153–158

    Google Scholar 

  • De Tiège X, Carrette E, Legros B et al (2012) Clinical added value of magnetic source imaging in the presurgical evaluation of refractory focal epilepsy. J Neurol Neurosurg Psychiatr 83:417–423

    Google Scholar 

  • Donahue D, Sanchez R, Hernandez A et al (2007) Preservation of a subcutaneous pocket for vagus nerve stimulation pulse generator during magnetoencephalography. Technical note. J Neurosurg 107:519–520

    Google Scholar 

  • Doss RC, Zhang W, Risse GL, Dickens DL (2009) Lateralizing language with magnetic source imaging: validation based on the Wada test. Epilepsia 50:2242–2248

    Google Scholar 

  • Duncan JS (2010) Imaging in the surgical treatment of epilepsy. Nat Rev Neurol 6:537–550

    Google Scholar 

  • Ebersole JS, Ebersole SM (2010) Combining MEG and EEG source modeling in epilepsy evaluations. J Clin Neurophysiol 27:360–371

    Google Scholar 

  • Enatsu R, Mikuni N, Usui K et al (2008) Usefulness of MEG magnetometer for spike detection in patients with mesial temporal epileptic focus. Neuroimage 41:1206–1219

    Google Scholar 

  • Evans LT, Morse R, Roberts DW (2012) Epilepsy surgery in tuberous sclerosis: a review. Neurosurg Focus 32:E5

    Google Scholar 

  • Fernandes JM, Da Silva AM, Huiskamp G et al (2005) What does an epileptiform spike look like in MEG? Comparison between coincident EEG and MEG spikes. J Clin Neurophysiol 22:68–73

    Google Scholar 

  • Findlay AM, Ambrose JB, Cahn-Weiner DA et al (2012) Dynamics of hemispheric dominance for language assessed by magnetoencephalographic imaging. Ann Neurol 71:668–686

    Google Scholar 

  • Fischer MJM, Scheler G, Stefan H (2005) Utilization of magnetoencephalography results to obtain favourable outcomes in epilepsy surgery. Brain 128:153–157

    Google Scholar 

  • Fisher RS, Van Emde Boas W, Blume W et al (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46:470–472

    Google Scholar 

  • Fujiwara H, Greiner HM, Hemasilpin N et al (2012) Ictal MEG onset source localization compared to intracranial EEG and outcome: improved epilepsy presurgical evaluation in pediatrics. Epilepsy Res 99:214–224

    Google Scholar 

  • Hashizume A, Iida K, Shirozu H et al (2007) Gradient magnetic-field topography for dynamic changes of epileptic discharges. Brain Res 1144:175–179

    Google Scholar 

  • Heers M, Rampp S, Kaltenhäuser M et al (2010a) Detection of epileptic spikes by magnetoencephalography and electroencephalography after sleep deprivation. Seizure 19:397–403

    Google Scholar 

  • Heers M, Rampp S, Kaltenhäuser M et al (2010b) Monofocal MEG in lesional TLE: does video EEG monitoring add crucial information? Epilepsy Res 92:54–62

    Google Scholar 

  • Hillebrand A, Barnes GR (2002) A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex. Neuroimage 16:638–650

    Google Scholar 

  • Hirata M, Goto T, Barnes G et al (2010) Language dominance and mapping based on neuromagnetic oscillatory changes: comparison with invasive procedures. J Neurosurg 112:528–538

    Google Scholar 

  • Huiskamp G, Agirre-Arrizubieta Z, Leijten F (2010) Regional differences in the sensitivity of MEG for interictal spikes in epilepsy. Brain Topogr 23:159–164

    Google Scholar 

  • Iida K, Otsubo H, Matsumoto Y et al (2005a) Characterizing magnetic spike sources by using magnetoencephalography-guided neuronavigation in epilepsy surgery in pediatric patients. J Neurosurg 102:187–196

    Google Scholar 

  • Iida K, Otsubo H, Mohamed IS et al (2005b) Characterizing magnetoencephalographic spike sources in children with tuberous sclerosis complex. Epilepsia 46:1510–1517. doi:10.1111/j.1528-1167.2005.14005.x

    Google Scholar 

  • Ishitobi M, Nakasato N, Yamamoto K, Iinuma K (2005) Opercular to interhemispheric source distribution of benign rolandic spikes of childhood. Neuroimage 25:417–423

    Google Scholar 

  • Iwasaki M, Burgess RC (2008) Magnetoencephalography in the evaluation of the irritative zone. In: Lüders HO (ed) Textbook of epilepsy surgery. Informa Healthcare, London, pp 537–543

    Google Scholar 

  • Iwasaki M, Nakasato N, Shamoto H et al (2002) Surgical implications of neuromagnetic spike localization in temporal lobe epilepsy. Epilepsia 43:415–424

    Google Scholar 

  • Iwasaki M, Nakasato N, Shamoto H, Yoshimoto T (2003) Focal magnetoencephalographic spikes in the superior temporal plane undetected by scalp EEG. J Clin Neurosci 10:236–238

    Google Scholar 

  • Iwasaki M, Pestana E, Burgess RC et al (2005) Detection of epileptiform activity by human interpreters: blinded comparison between electroencephalography and magnetoencephalography. Epilepsia 46:59–68

    Google Scholar 

  • Jansen FE, Huiskamp G, Van Huffelen AC et al (2006) Identification of the epileptogenic tuber in patients with tuberous sclerosis: a comparison of high-resolution EEG and MEG. Epilepsia 47:108–114

    Google Scholar 

  • Kaiboriboon K, Nagarajan S, Mantle M, Kirsch HE (2010) Interictal MEG/MSI in intractable mesial temporal lobe epilepsy: spike yield and characterization. Clin Neurophysiol 121:325–331

    Google Scholar 

  • Kakisaka Y, Nakasato N, Haginoya K et al (2009) Sensorimotor seizures of pediatric onset with unusual posteriorly oriented rolandic spikes. Epilepsy Res 84:153–158

    Google Scholar 

  • Kakisaka Y, Alexopoulos AV, Gupta A et al (2010) Generalized 3-Hz spike-and-wave complexes emanating from focal epileptic activity in pediatric patients. Epilepsy Behav 20:103–106

    Google Scholar 

  • Kakisaka Y, Gupta A, Wang ZI et al (2011a) Different cortical involvement pattern of generalized and localized spasms: a magnetoencephalography study. Epilepsy Behav 22:599–601

    Google Scholar 

  • Kakisaka Y, Iwasaki M, Haginoya K et al (2011b) Somatotopic distribution of peri-rolandic spikes may predict prognosis in pediatric-onset epilepsy with sensorimotor seizures. Clin Neurophysiol 122:869–873

    Google Scholar 

  • Kakisaka Y, Iwasaki M, Alexopoulos AV et al (2012a) Magnetoencephalography in fronto-parietal opercular epilepsy. Epilepsy Res 102:71–77

    Google Scholar 

  • Kakisaka Y, Wang ZI, Mosher JC et al (2012b) Clinical evidence for the utility of movement compensation algorithm in magnetoencephalography: successful localization during focal seizure. Epilepsy Res 101:191–196

    Google Scholar 

  • Kakisaka Y, Mosher JC, Wang ZI et al (2013) Utility of temporally-extended signal space separation algorithm for magnetic noise from vagal nerve stimulators. Clin Neurophysiol 124:1277–1282

    Google Scholar 

  • Kakisaka Y, Wang ZI, Mosher JC et al (2012d) Magnetoencephalography’s higher sensitivity to epileptic spikes may elucidate the profile of electroencephalographically negative epileptic seizures. Epilepsy Behav 23:171–173

    Google Scholar 

  • Kawamura T, Nakasato N, Seki K et al (1996) Neuromagnetic evidence of pre- and post-central cortical sources of somatosensory evoked responses. Electroencephalogr Clin Neurophysiol 100:44–50

    Google Scholar 

  • Kirsch HE, Mantle M, Nagarajan SS (2007a) Concordance between routine interictal magnetoencephalography and simultaneous scalp electroencephalography in a sample of patients with epilepsy. J Clin Neurophysiol 24:215–231

    Google Scholar 

  • Kirsch HE, Zhu Z, Honma S et al (2007b) Predicting the location of mouth motor cortex in patients with brain tumors by using somatosensory evoked field measurements. J Neurosurg 107:481–487

    Google Scholar 

  • Knake S, Halgren E, Shiraishi H et al (2006) The value of multichannel MEG and EEG in the presurgical evaluation of 70 epilepsy patients. Epilepsy Res 69:80–86

    Google Scholar 

  • Knowlton RC, Elgavish R, Howell J et al (2006) Magnetic source imaging versus intracranial electroencephalogram in epilepsy surgery: a prospective study. Ann Neurol 59:835–842

    Google Scholar 

  • Knowlton RC, Razdan SN, Limdi N et al (2009) Effect of epilepsy magnetic source imaging on intracranial electrode placement. Ann Neurol 65:716–723

    Google Scholar 

  • König MW, Mahmoud MA, Fujiwara H et al (2009) Influence of anesthetic management on quality of magnetoencephalography scan data in pediatric patients: a case series. Paediatr Anaesth 19:507–512

    Google Scholar 

  • Kubota Y, Otsuki T, Kaneko Y et al (2007) Delayed N100m latency in focal epilepsy associated with spike dipoles at the primary auditory cortex. J Clin Neurophysiol 24:263–270

    Google Scholar 

  • Lau M, Yam D, Burneo JG (2008) A systematic review on MEG and its use in the presurgical evaluation of localization-related epilepsy. Epilepsy Res 79:97–104

    Google Scholar 

  • Lee D, Sawrie SM, Simos PG et al (2006) Reliability of language mapping with magnetic source imaging in epilepsy surgery candidates. Epilepsy Behav 8:742–749

    Google Scholar 

  • Lee JW, Tanaka N, Shiraishi H et al (2010a) Evaluation of postoperative sharp waveforms through EEG and magnetoencephalography. J Clin Neurophysiol 27:7–11

    Google Scholar 

  • Lee S-Y, Kim JS, Chung CK et al (2010b) Assessment of language dominance by event-related oscillatory changes in an auditory language task: magnetoencephalography study. J Clin Neurophysiol 27:263–269

    Google Scholar 

  • Leijten FSS, Huiskamp G (2008) Interictal electromagnetic source imaging in focal epilepsy: practices, results and recommendations. Curr Opin Neurol 21:437–445

    Google Scholar 

  • Leijten FSS, Huiskamp GM, Hilgersom I, Van Huffelen AC (2003) High-resolution source imaging in mesiotemporal lobe epilepsy: a comparison between MEG and simultaneous EEG. J Clin Neurophysiol 20:227–238

    Google Scholar 

  • Lin YY, Shih YH, Hsieh JC et al (2003) Magnetoencephalographic yield of interictal spikes in temporal lobe epilepsy. Comparison with scalp EEG recordings. Neuroimage 19:1115–1126

    Google Scholar 

  • Lüders HO, Engel JJ, Munari C (1993) General principles. In: Engel JJ (ed) Surgical treatment of epilepsy, 2nd edn. Raven Press, New York, pp 137–153

    Google Scholar 

  • Mäkelä JP, Forss N, Jääskeläinen J et al (2006) Magnetoencephalography in neurosurgery. Neurosurgery 59:493–510

    Google Scholar 

  • Malmivuo J, Suihko V, Eskola H (1997) Sensitivity distributions of EEG and MEG measurements. IEEE Trans Biomed Eng 44:196–208

    Google Scholar 

  • McDonald CR, Thesen T, Hagler DJ et al (2009) Distributed source modeling of language with magnetoencephalography: application to patients with intractable epilepsy. Epilepsia 50:2256–2266

    Google Scholar 

  • Medvedovsky M, Taulu S, Gaily E et al (2012) Sensitivity and specificity of seizure-onset zone estimation by ictal magnetoencephalography. Epilepsia 53:1649–1657

    Google Scholar 

  • Merrifield WS, Simos PG, Papanicolaou AC et al (2007) Hemispheric language dominance in magnetoencephalography: sensitivity, specificity, and data reduction techniques. Epilepsy Behav 10:120–128

    Google Scholar 

  • Mohamed IS, Otsubo H, Ochi A et al (2007) Utility of magnetoencephalography in the evaluation of recurrent seizures after epilepsy surgery. Epilepsia 48:2150–2159

    Google Scholar 

  • Nagamatsu K, Nakasato N, Hatanaka K et al (2001) Neuromagnetic localization of N15, the initial cortical response to lip stimulus. NeuroReport 12:1–5

    Google Scholar 

  • Nakasato N, Yoshimoto T (2000) Somatosensory, auditory, and visual evoked magnetic fields in patients with brain diseases. J Clin Neurophysiol 17:201–211

    Google Scholar 

  • Nakasato N, Kumabe T, Kanno A et al (1997) Neuromagnetic evaluation of cortical auditory function in patients with temporal lobe tumors. J Neurosurg 86:610–618

    Google Scholar 

  • Oishi M, Kameyama S, Masuda H et al (2006) Single and multiple clusters of magnetoencephalographic dipoles in neocortical epilepsy: significance in characterizing the epileptogenic zone. Epilepsia 47:355–364

    Google Scholar 

  • Ossadtchi A, Baillet S, Mosher JC et al (2004) Automated interictal spike detection and source localization in magnetoencephalography using independent components analysis and spatio-temporal clustering. Clin Neurophysiol 115:508–522

    Google Scholar 

  • Ossenblok P, De Munck JC, Colon A et al (2007) Magnetoencephalography is more successful for screening and localizing frontal lobe epilepsy than electroencephalography. Epilepsia 48:2139–2149

    Google Scholar 

  • Papanicolaou AC, Simos PG, Castillo EM et al (2004) Magnetocephalography: a noninvasive alternative to the Wada procedure. J Neurosurg 100:867–876

    Google Scholar 

  • Park H-M, Nakasato N, Iwasaki M et al (2004) Comparison of magnetoencephalographic spikes with and without concurrent electroencephalographic spikes in extratemporal epilepsy. Tohoku J Exp Med 203:165–174

    Google Scholar 

  • Pataraia E, Lindinger G, Deecke L et al (2005) Combined MEG/EEG analysis of the interictal spike complex in mesial temporal lobe epilepsy. Neuroimage 24:607–614

    Google Scholar 

  • Pelletier I, Sauerwein HC, Lepore F et al (2007) Non-invasive alternatives to the Wada test in the presurgical evaluation of language and memory functions in epilepsy patients. Epileptic Disord 9:111–126

    Google Scholar 

  • Perkins FF, Breier J, McManis MH et al (2008) Benign rolandic epilepsy—perhaps not so benign: use of magnetic source imaging as a predictor of outcome. J Child Neurol 23:389–393

    Google Scholar 

  • Pirmoradi M, Béland R, Nguyen DK et al (2010) Language tasks used for the presurgical assessment of epileptic patients with MEG. Epileptic Disord 12:97–108

    Google Scholar 

  • Ramachandrannair R, Otsubo H, Shroff MM et al (2007) MEG predicts outcome following surgery for intractable epilepsy in children with normal or nonfocal MRI findings. Epilepsia 48:149–157

    Google Scholar 

  • Ramachandrannair R, Ochi A, Imai K et al (2008) Epileptic spasms in older pediatric patients: MEG and ictal high-frequency oscillations suggest focal-onset seizures in a subset of epileptic spasms. Epilepsy Res 78:216–224

    Google Scholar 

  • Ramantani G, Boor R, Paetau R et al (2006) MEG versus EEG: influence of background activity on interictal spike detection. J Clin Neurophysiol 23:498–508

    Google Scholar 

  • Rodin E, Funke M, Berg P, Matsuo F (2004) Magnetoencephalographic spikes not detected by conventional electroencephalography. Clin Neurophysiol 115:2041–2047

    Google Scholar 

  • Sakurai K, Tanaka N, Kamada K et al (2007) Magnetoencephalographic studies of focal epileptic activity in three patients with epilepsy suggestive of Lennox-Gastaut syndrome. Epileptic Disord 9:158–163

    Google Scholar 

  • Sakurai K, Takeda Y, Tanaka N et al (2010) Generalized spike-wave discharges involve a default mode network in patients with juvenile absence epilepsy: a MEG study. Epilepsy Res 89:176–184

    Google Scholar 

  • Salayev KA, Nakasato N, Ishitobi M et al (2006) Spike orientation may predict epileptogenic side across cerebral sulci containing the estimated equivalent dipole. Clin Neurophysiol 117:1836–1843

    Google Scholar 

  • Salmelin R, Hari R (1994) Characterization of spontaneous MEG rhythms in healthy adults. Electroencephalogr Clin Neurophysiol 91:237–248

    Google Scholar 

  • Schneider F, Alexopoulos AV, Wang Z et al (2012a) Magnetic source imaging in non-lesional neocortical epilepsy: additional value and comparison with ICEEG. Epilepsy Behav 24:234–240

    Google Scholar 

  • Schneider F, Irene Wang Z, Alexopoulos AV et al (2013) Magnetic source imaging and ictal SPECT in MRI-negative neocortical epilepsies: additional value and comparison with intracranial EEG. Epilepsia 54:359–369

    Google Scholar 

  • Schwartz ES, Edgar JC, Gaetz WC, Roberts TPL (2010) Magnetoencephalography. Pediatr Radiol 40:50–58

    Google Scholar 

  • Seo JH, Holland K, Rose D et al (2011) Multimodality imaging in the surgical treatment of children with nonlesional epilepsy. Neurology 76:41–48

    Google Scholar 

  • Shibasaki H, Ikeda A, Nagamine T (2007) Use of magnetoencephalography in the presurgical evaluation of epilepsy patients. Clin Neurophysiol 118:1438–1448

    Google Scholar 

  • Shiraishi H, Ahlfors SP, Stufflebeam SM et al (2005) Application of magnetoencephalography in epilepsy patients with widespread spike or slow-wave activity. Epilepsia 46:1264–1272

    Google Scholar 

  • Shiraishi H, Ahlfors SP, Stufflebeam SM et al (2011) Comparison of three methods for localizing interictal epileptiform discharges with magnetoencephalography. J Clin Neurophysiol 28:431–440

    Google Scholar 

  • Shirozu H, Iida K, Hashizume A et al (2010) Gradient magnetic-field topography reflecting cortical activities of neocortical epilepsy spikes. Epilepsy Res 90:121–131

    Google Scholar 

  • Slater JD, Khan S, Li Z, Castillo E (2012) Characterization of interictal epileptiform discharges with time-resolved cortical current maps using the helmholtz-hodge decomposition. Front Neurol 3:138

    Google Scholar 

  • Song T, Cui L, Gaa K et al (2009) Signal space separation algorithm and its application on suppressing artifacts caused by vagus nerve stimulation for magnetoencephalography recordings. J Clin Neurophysiol 26:392–400

    Google Scholar 

  • Stefan H, Hummel C, Scheler G et al (2003) Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. Brain 126:2396–2405

    Google Scholar 

  • Stefan H, Paulini-Ruf A, Hopfengärtner R, Rampp S (2009) Network characteristics of idiopathic generalized epilepsies in combined MEG/EEG. Epilepsy Res 85:187–198

    Google Scholar 

  • Stefan H, Heers M, Schmitt HJ et al (2010) Increased spike frequency during general anesthesia with etomidate for magnetoencephalography in patients with focal epilepsies. Clin Neurophysiol 121:1220–1226

    Google Scholar 

  • Stefan H, Rampp S, Knowlton RC (2011a) Magnetoencephalography adds to the surgical evaluation process. Epilepsy Behav 20:172–177

    Google Scholar 

  • Stefan H, Wu X, Buchfelder M et al (2011b) MEG in frontal lobe epilepsies: localization and postoperative outcome. Epilepsia 52:2233–2238

    Google Scholar 

  • Stephen JM, Ranken DM, Aine CJ et al (2005) Differentiability of simulated MEG hippocampal, medial temporal and neocortical temporal epileptic spike activity. J Clin Neurophysiol 22:388–401

    Google Scholar 

  • Stufflebeam SM, Tanaka N, Ahlfors SP (2009) Clinical applications of magnetoencephalography. Hum Brain Mapp 30:1813–1823

    Google Scholar 

  • Sutherling WW, Mamelak AN, Thyerlei D et al (2008) Influence of magnetic source imaging for planning intracranial EEG in epilepsy. Neurology 71:990–996

    Google Scholar 

  • Szmuk P, Kee S, Pivalizza EG et al (2003) Anaesthesia for magnetoencephalography in children with intractable seizures. Paediatr Anaesth 13:811–817

    Google Scholar 

  • Tanaka N, Cole AJ, Von Pechmann D et al (2009a) Dynamic statistical parametric mapping for analyzing ictal magnetoencephalographic spikes in patients with intractable frontal lobe epilepsy. Epilepsy Res 85:279–286

    Google Scholar 

  • Tanaka N, Thiele EA, Madsen JR et al (2009b) Magnetoencephalographic analysis in patients with vagus nerve stimulator. Pediatr Neurol 41:383–387

    Google Scholar 

  • Tanaka N, Liu H, Reinsberger C et al (2013) Language lateralization represented by spatiotemporal mapping of magnetoencephalography. AJNR Am J Neuroradiol 34:558–563

    Google Scholar 

  • Uda T, Tsuyuguchi N, Okumura E et al (2012) sLORETA-qm for interictal MEG epileptic spike analysis: comparison of location and quantity with equivalent dipole estimation. Clin Neurophysiol 123:1496–1501

    Google Scholar 

  • Usui K, Ikeda A, Nagamine T et al (2009) Abnormal auditory cortex with giant N100m signal in patients with autosomal dominant lateral temporal lobe epilepsy. Clin Neurophysiol 120:1923–1926

    Google Scholar 

  • Van Poppel M, Wheless JW, Clarke DF et al (2012) Passive language mapping with magnetoencephalography in pediatric patients with epilepsy. J Neurosurg Pediatr 10:96–102

    Google Scholar 

  • Wennberg R, Valiante T, Cheyne D (2011) EEG and MEG in mesial temporal lobe epilepsy: where do the spikes really come from? Clin Neurophysiol 122:1295–1313

    Google Scholar 

  • Westmijse I, Ossenblok P, Gunning B, Van Luijtelaar G (2009) Onset and propagation of spike and slow wave discharges in human absence epilepsy: a MEG study. Epilepsia 50:2538–2548

    Google Scholar 

  • Widjaja E, Otsubo H, Raybaud C et al (2008) Characteristics of MEG and MRI between Taylor’s focal cortical dysplasia (type II) and other cortical dysplasia: surgical outcome after complete resection of MEG spike source and MR lesion in pediatric cortical dysplasia. Epilepsy Res 82:147–155

    Google Scholar 

  • Widjaja E, Zarei Mahmoodabadi S, Otsubo H et al (2009) Subcortical alterations in tissue microstructure adjacent to focal cortical dysplasia: detection at diffusion-tensor MR imaging by using magnetoencephalographic dipole cluster localization. Radiology 251:206–215

    Google Scholar 

  • World Health Organization (2009) Epilepsy fact sheet. http://www.who.int/mediacentre/factsheets/fs999/en/index.html. Accessed 16 Feb 2013

  • Wu JY, Sutherling WW, Koh S et al (2006) Magnetic source imaging localizes epileptogenic zone in children with tuberous sclerosis complex. Neurology 66:1270–1272

    Google Scholar 

  • Wu X-T, Rampp S, Buchfelder M et al (2013) Interictal magnetoencephalography used in magnetic resonance imaging-negative patients with epilepsy. Acta Neurol Scand 127:274–280

    Google Scholar 

  • Yoshinaga H, Kobayashi K, Hoshida T et al (2008) Magnetoencephalogram in a postoperative case with a large skull defect. Pediatr Neurol 39:48–51

    Google Scholar 

  • Yu HY, Nakasato N, Iwasaki M et al (2004) Neuromagnetic separation of secondarily bilateral synchronized spike foci: report of three cases. J Clin Neurosci 11:644–648

    Google Scholar 

  • Zhang R, Wu T, Wang Y et al (2011) Interictal magnetoencephalographic findings related with surgical outcomes in lesional and nonlesional neocortical epilepsy. Seizure 20:692–700

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Iwasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iwasaki, M., Nakasato, N. (2014). MEG in Epilepsy and Pre-surgical Functional Mapping. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33045-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33045-2_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33044-5

  • Online ISBN: 978-3-642-33045-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics