Skip to main content

Dynamic Absorber

  • Chapter
  • First Online:
Modern Earthquake Engineering
  • 2010 Accesses

Abstract

To absorb the kinetic energy produced by dynamic loading such as wave, wind, earthquake and ice loading on a structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Den Hartog JP (1947) Mechanical vibrations, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  2. Kareem A (1983) Mitigation of wind induced motion of tall buildings. J Wind Eng Ind Aerodyn 11(1–3):273–284

    Article  Google Scholar 

  3. Kareem A (1990) Reduction of wind induced motion utilizing a tuned sloshing damper. J Wind Eng Ind Aerodyn 36:725–737

    Article  Google Scholar 

  4. RWDI (2001) Technical notes—damping systems, Iss. 10. Rowan Williams Davies & Irwin Inc., Guelph

    Google Scholar 

  5. Ormondroyd J, Den Harog JP (1928) The theory of dynamic vibration absorber. Trans. ASME 50(7):9–22

    Google Scholar 

  6. Bishop RED, Welbourn DB (1952) The problem of the dynamic vibration absorber, engineering, London, pp 174–769

    Google Scholar 

  7. Snowdown JC (1960) Steady-state behaviour of the dynamic absorber. J Acoust Soc Am 31(8):1096–1103

    Article  Google Scholar 

  8. Falcon KC, Stone BJ, Simcock WD, Andrew C (1967) Optimization of vibration absorbers: a graphical method for use on idealized systems with restricted damping. J Mech Eng Soc 9:374–381

    Article  Google Scholar 

  9. Ioi T, Ikeda K (1978) On the dynamic vibration damped absorber of the vibration system. Bull Jpn Soc Mech Eng 21(151):64–71

    Article  Google Scholar 

  10. Zahrai SM, Ghannadi-Asl M (2006) Effectiveness of TMDs in mitigating seismic vibration of multi-story buildings. In: Seventh international congress on civil engineering, Tehran, Iran, 8–10 May 2006

    Google Scholar 

  11. Jia J (2014) Essentials of applied dynamic analysis. Springer, Heidelberg

    Book  MATH  Google Scholar 

  12. Mansour AE, Ertekin RC (2003) Proceedings of the 15th international ship and offshore structures congress, San Diego, USA

    Google Scholar 

  13. Sadek F, Mohraz B, Taylor AW, Chung RM (1996) Passive energy dissipation devices for seismic applications, NISTIR 5923, National Institute of Standards and Technology, US Department of Commerce, Gaithersburg, Maryland

    Google Scholar 

  14. Vandiver JK, Mitome S (1982) Effect of liquid storage tanks on the dynamic response of offshore platforms. In: Kirk CL (ed) Dynamic analysis of offshore structures. CML, Heidelberg, pp 25–32

    Google Scholar 

  15. Dodge FT (2000) The new “dynamic behaviour of liquids in moving containers. Southwest Research Institute, San Antonio, Texas

    Google Scholar 

  16. Warburton GB, Ayorinde EO (1980) Optimum absorber parameters for simple systems. Earthq Eng Struct Dyn 8:197–217

    Article  Google Scholar 

  17. Zhou F (1997) Anti-seismic control of engineering structures. China Seismological Press, Beijing (in Chinese)

    Google Scholar 

  18. GERB (2015) Tuned mass dampers for bridges, buildings and other tall structures. GERB Schwingungsisolierungen GmbH & Co.KG, Berlin

    Google Scholar 

  19. Matta E, Stefano AD (2009) Robust design of mass-uncertain rolling pendulum TMDs for the seismic protection of buildings. Mech Syst Signal Process 23:127–147

    Article  Google Scholar 

  20. Murudi MM, Mane SM (2004) Seismic effectiveness of tuned mass damper (TMD) for different ground motion parameters. In: Proceedings of 13th world conference on earthquake engineering, Vancouver, No. 2325

    Google Scholar 

  21. Gupta YP, Chandrasekaren AR (1969) Absorber system for earthquake excitation. In: Proceedings of the fourth world conference on earthquake engineering, Santiago, Chile, vol II, pp 139–148

    Google Scholar 

  22. Kaynia AM, Veneziano D, Biggs JM (1981) Seismic effectiveness of tuned mass dampers. J Struct Div ASCE 107:1465–1484

    Google Scholar 

  23. Infinity Bridge (2009) www.flintneill.com, Flint & Neill

  24. Infinity Bridge (2011) http://en.wikipedia.org

  25. www.taipei-101.com.tw

  26. Haskett T, Breukelman B, Robinson J, Kottelenberg J (2003) Tuned mass dampers under excessive structural excitation. Motioneering Inc., Guelph

    Google Scholar 

  27. Joseph LM, Poon D, Shieh S (2006) Ingredients of high-rise design. Taipei 101 the world’s tallest building. Structure Magazine, 6, 2006

    Google Scholar 

  28. Kawano K, Venkataramana K (1992) Seismic response of offshore platform with TMD. In: 10th World conference on earthquake engineering

    Google Scholar 

  29. Zhang L, Yue Q (2016) Experimental study on mitigation of ice induced offshore structure vibration with TMD. In: Proceeding of fourth China-Japan-US symposium on structural control and monitoring, Hangzhou

    Google Scholar 

  30. Kanai K (1967) Semi-empirical formula for the seismic characteristics of the ground. Bulletin of the Earthquake Research Institute, vol 35. University of Tokyo, pp 309–25

    Google Scholar 

  31. Hoang N, Fujino Y, Warnitchai P (2008) Optimal tuned mass damper for seismic applications and practical design formulas. Eng Struct 30(3):707–715

    Article  Google Scholar 

  32. Lou M, Jingning W (1998) Effects of soil–structure interaction on structural vibration control. Dev Geotech Eng 83:189–202

    Article  Google Scholar 

  33. Palazzo B, Petti L (1997) Aspects of passive control of structural vibrations. Meccanica 32:529–544

    Article  MATH  Google Scholar 

  34. Palazzo B, Petti L (1999) Combined control strategy: base isolation and tuned mass damping. ISET J Earthq Technol 36:121–123

    Google Scholar 

  35. Taniguchi T, Der Kiureghian A, Melkumyan M (2008) Effect of tuned mass damper on displacement demand of base-isolated structures. Eng Struct 30:3478–3488

    Article  Google Scholar 

  36. Robinson JK, Gamble SL, Myslimaj BM (2007) Supplemental damping and using tuned sloshing dampers. Struct Mag 6:14–18

    Google Scholar 

  37. Sakai F, Takaeda S (1989) Tuned liquid column damper: new type device for suppression of building vibrations. In: Proceedings of international conference on high rise buildings, Nanjing, China

    Google Scholar 

  38. Lee S-K, Min K-W, Lee H-R (2011) Parameter identification of new bidirectional tuned liquid column and sloshing dampers. J Sound Vib 330:1312–1327

    Article  Google Scholar 

  39. Hitchcock PA, Kwok KCS, Watkins RD, Samali B (1997) Characteristic of liquid column vibrations absorbers (LCVA)—I. Eng Struct 19:126–134

    Article  Google Scholar 

  40. Hitchcock A, Kwok KCS, Watkins RD, Samali B (1997) Characteristic of liquid column vibrations absorbers (LCVA)—II. Eng Struct 19:135–144

    Article  Google Scholar 

  41. Hochrainer MJ, Ziegler F (2006) Control of tall building vibrations by sealed tuned liquid column dampers. Struct Control Health Monit 13:980–1002

    Article  Google Scholar 

  42. Reiterer M, Ziegler F (2006) Control of pedestrian-induced vibrations of long-span bridges. Struct Control Health Monit 13:1003–1027

    Article  Google Scholar 

  43. Shimizu K, Teramura A (1994) Development of vibration control system using Ushaped tank. In: Proceedings of the first international workshop and seminar on behavior of steel structures in seismic areas, Timisoara, Romania, 7.25–7.34

    Google Scholar 

  44. Kareem A, Kijewski T, Tamura Yukio (1999) Mitigation of motions of tall buildings with specific examples of recent applications. J Wind Struct 2(3):201–251

    Article  Google Scholar 

  45. Faltinsen OM, Rognebakke OF, Lukovsky IA, Timokha AN (2000) Multidimensional modal analysis of non-linear sloshing in a rectangular tank with finite water depth. J Fluid Mech 407:201–234

    Article  MathSciNet  MATH  Google Scholar 

  46. Jin Q, Li X, Sun N, Zhou J, Guan J (2007) Experimental and numerical study on tuned liquid dampers for controlling earthquake response of jacket offshore platform. Mar Struct 20(4):238–254

    Article  Google Scholar 

  47. Dong S, Li H, Takayama T (2001) Characteristics of tuned liquid damper for suppressing wave induced vibration. In; Proceedings of the 11th international offshore and polar engineering conference, Stavanger, Norway, pp 79–83

    Google Scholar 

  48. Xu YL, Samali B, Kwok KCS (1992) Control of along-wind response of structures by mass and liquid dampers. J Eng Mech 118(1):20–39

    Article  Google Scholar 

  49. Yalla SK, Kareem A, Kantor JC (2001) Semi-active tuned liquid column dampers for vibration control of structures. Eng Struct 23:1469–1479

    Article  Google Scholar 

  50. Kareem A (1994) The next generation of tuned liquid dampers. In: Proceedings of the first world conference on structural control, vol I, Los Angeles, FB5. USA: IASC, pp 19–28

    Google Scholar 

  51. Yalla SK, Kareem A, Kantor JC (1998) Semi-active control strategies for tuned liquid column dampers to reduce wind and seismic response of structures. In: Proceedings of the second world conference on structural control, Kyoto, Japan, John Wiley, UK, pp 559–568

    Google Scholar 

  52. Abe M, Kimura S, Fujino Y (1996) Control laws for semi-active tuned liquid column damper with variable orifice opening. Paper presented at the second international workshop on structural control, Hong Kong, December, 1996

    Google Scholar 

  53. Haroun MA, Pires JA (1994) Active orifice control in hybrid liquid column dampers. In: Proceedings of the first world conference on structural control, vol I, Los Angeles, FA1. USA: IASC, pp 69–78

    Google Scholar 

  54. Banerji P, Samanta A (2011) Earthquake vibration control of structures using hybrid mass liquid damper. Eng Struct 33(4):1291–1301

    Article  Google Scholar 

  55. Love JS, Tait MJ, Toopchi-Nezhad H (2011) A hybrid structural control system using a tuned liquid damper to reduce the wind induced motion of a base isolated structure. Eng Struct 33(3):738–746

    Article  Google Scholar 

  56. Kaneko S, Ishikawa M (1999) Modeling of tuned liquid damper with submerged nets. ASME J Press Vessel Technol 121:334–343

    Article  Google Scholar 

  57. Warnitchai P, Pinkaew T (1998) Modeling of liquid sloshing in rectangular tanks with flow-dampening devices. Eng Struct 20(2):593–600

    Article  Google Scholar 

  58. Tait MJ (2008) Modeling and preliminary design of a structure-TLD system. Eng Struct 30(10):2644–2655

    Article  Google Scholar 

  59. Tait MJ, El Damatty AA, Isyumov N, Siddique MR (2005) Numerical flow models to simulate tuned liquid dampers (TLD) with slat screens. J Fluids Struct 20:1007–1023

    Article  Google Scholar 

  60. Tait MJ, El Damatty AA, Isyumov N (2004) Testing of tuned liquid damper with screens and development of equivalent TMD model. Wind Struct 7(4):215–234

    Article  Google Scholar 

  61. Cassolato MR, Love JS, Tait MJ (2010) Modelling of a tuned liquid damper with inclined damping screens. J Struct Control Health Monit 18(6):674–681

    Article  Google Scholar 

  62. Fediw AA, Isyumov N, Vickery BJ (1995) Performance of a tuned sloshing water damper. J Wind Eng Ind Aerodyn 57:237–247

    Article  Google Scholar 

  63. Lee D, Ng M (2010) Application of tuned liquid dampers for the efficient structural design of slender tall buildings. CTBUH J 4:30–36

    Google Scholar 

  64. Faltinsen OM, Timokha AN (2011) Natural sloshing frequencies and modes in a rectangular tank with a slat-type screen. J Sound Vib 330:1490–1503

    Article  Google Scholar 

  65. Soong TT, Constantinou MC (1994) Passive and active structural vibration control in civil engineering. Springer, Heidelberg

    Book  Google Scholar 

  66. Hitchcock PA, Kwok KCS, Watkins RD (1997) Characteristics of liquid column vibration absorbers (LCVA)-I. Eng Struct 19(2):126–134

    Article  Google Scholar 

  67. Yalla SK, Kareem A (2002) Discussion of paper: tuned liquid dampers for controlling earthquake response of structures by P. Banerji et al., Earthquake Engng Struct. Dyn., 2000; 29(5):587–602. Earthq Eng Struct Dyn 31:1037–1039

    Article  Google Scholar 

  68. Yalla SK (2001) Liquid dampers for mitigation of structural response: theoretical development and experimental validation. PhD thesis, University of Notre Dame, August, 2001

    Google Scholar 

  69. Modi VJ, Welt F (1987) Vibration control using nutation dampers. In: International conference on flow induced vibrations, London, England, pp 369–376

    Google Scholar 

  70. Tamura Y, Fuji K, Sato T, Wakahara T, Kosugi M (1988) Wind induced vibration of tall towers and practical applications of tuned sloshing dampers. In: Proceedings of symposium/workshop on serviceability of buildings, Ottawa, Canada, vol 1, pp 228–241

    Google Scholar 

  71. Kareem A (1993) Tuned liquid dampers: past, present, and future. In: Proceedings of the seventh US national conference on wind engineering

    Google Scholar 

  72. Fujino Y, Sun L, Pacheco BM, Chaiseri P (1992) Tuned liquid damper (TLD) for suppressing horizontal motion of structures. J Eng Mech 118(10):2017–2030

    Article  Google Scholar 

  73. International Organization for Standardization (1984) Guidelines for the evaluation of the response of occupants of fixed structures, especially buildings and offshore structures, to low-frequency horizontal motion (0.063 to 1.0 Hz) ISO 6897-1984. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  74. Wakahara T, Shimada K, Tamura Y (1994) Practical application of tuned liquid damper for tall buildings. In: ASCE structures congress and IASS international symposium, Atlanta

    Google Scholar 

  75. Tamura Y, Fujii K, Ohtsuki T, Wakahara T, Kohsaka R (1995) Effectiveness of tuned liquid dampers under wind excitation. Eng Struct 17(9):609–621

    Article  Google Scholar 

  76. www.deicon.com

  77. Yalla S, Kareem A (2000) Optimum absorber parameters for tuned liquid column dampers. J Struct Eng ASCE 126(8):906–915

    Article  Google Scholar 

  78. Rana R, Soong TT (1998) Parametric study and simplified design of tuned mass dampers. Eng Struct 20(3):193–204

    Article  Google Scholar 

  79. Kitada Y, Park KC (1994) A comparative study of distributed vs. concentrated hybrid mass damper systems in high-rise buildings. In: Proceedings of the first world conference on structural control, FA2-23, vol. 3, Pasadena, CA

    Google Scholar 

  80. http://www.ecs.csun.edu/~shustov/Topic9.htm

  81. Lieber P, Jensen DP (1945) An acceleration damper: development, design, and some applications. Trans ASME 67:523–530

    Google Scholar 

  82. Masri SF, Caughey TK (1966) On the stability of the impact damper. Transactions of the ASME, pp 586–592

    Google Scholar 

  83. Reed III WH (1967) Hanging-chain impact dampers: a simple method for damping tall flexible structures. In: International research seminar—wind effects on buildings and structures, Ottawa, Canada, pp 284–321

    Google Scholar 

  84. Cheng J, Hui X (2006) Inner mass impact damper for attenuating structure vibration. Int J Solids Struct 43:5355–5369

    Article  MATH  Google Scholar 

  85. Carotti A, Turci E (1999) A tuning criterion for the inertial tuned damper: design using phasors in the Argand–Gauss plane. Appl Math Model 23:199–217

    Article  MATH  Google Scholar 

  86. Ema S, Marui E (1996) A fundamental study on impact dampers. Int J Mach Tools Manuf 36(3):293–306

    Article  Google Scholar 

  87. Cheng CC, Shiu JS (2001) Transient vibration analysis of a high speed feed drive system. J Sound Vib 239(3):489–504

    Article  Google Scholar 

  88. Dlmentberg MF, Iourtchenko DV (2004) Random vibrations with impacts: a review. Non-linear Dyn 36:229–254

    Article  MathSciNet  MATH  Google Scholar 

  89. Zhang D, Angeles J (2005) Impact dynamics of flexible-joint robots. Comput Struct 83:25–33

    Article  Google Scholar 

  90. Ying Z, Semercigil SE (1991) Response of a new tuned vibration absorber to an earthquake-like random excitation. J Sound Vib 150(3):520–530

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junbo Jia .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Jia, J. (2017). Dynamic Absorber. In: Modern Earthquake Engineering . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31854-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31854-2_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31853-5

  • Online ISBN: 978-3-642-31854-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics