Skip to main content

Online Mechanism Design (Randomized Rounding on the Fly)

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7392))

Abstract

We study incentive compatible mechanisms for combinatorial auctions (CAs) in an online model with sequentially arriving bidders, where the arrivals’ order is either random or adversarial. The bidders’ valuations are given by demand oracles. Previously known online mechanisms for CAs assume that each item is available at a certain multiplicity b > 1. Typically, one assumes b = Ω(logm), where m is the number of different items.

We present the first online mechanisms guaranteeing competitiveness for any multiplicity b ≥ 1. We introduce an online variant of oblivious randomized rounding enabling us to prove competitive ratios that are close to or even beat the best known offline approximation factors for various CAs settings. Our mechanisms are universally truthful, and they significantly improve on the previously known mechanisms.

This work has been supported by EPSRC grants EP/F069502/1 and EP/G069239/1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awerbuch, B., Azar, Y., Meyerson, A.: Reducing truth-telling online mechanisms to online optimization. In: STOC, pp. 503–510 (2003)

    Google Scholar 

  2. Awerbuch, B., Azar, Y., Plotkin, S.A.: Throughput-competitive on-line routing. In: FOCS, pp. 32–40 (1993)

    Google Scholar 

  3. Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and online mechanisms. In: SODA, pp. 434–443 (2007)

    Google Scholar 

  4. Bansal, N., Korula, N., Nagarajan, V., Srinivasan, A.: On k-Column Sparse Packing Programs. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 369–382. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Bartal, Y., Gonen, R., Nisan, N.: Incentive compatible multi unit combinatorial auctions. In: The Proc. of the 9th TARK, pp. 72–87 (2003)

    Google Scholar 

  6. Blumrosen, L., Nisan, N.: Combinatorial auctions. In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game Theory (2007)

    Google Scholar 

  7. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge University Press (1998)

    Google Scholar 

  8. Buchbinder, N., Naor, J.: Online Primal-Dual Algorithms for Covering and Packing Problems. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 689–701. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Buchbinder, N., Naor, J.: Improved bounds for online routing and packing via a primal-dual approach. In: FOCS, pp. 293–304 (2006)

    Google Scholar 

  10. Dobzinski, S.: Two Randomized Mechanisms for Combinatorial Auctions. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 89–103. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Dobzinski, S., Fu, H., Kleinberg, R.: Truthfulness via proxies. CoRR, abs/1011.3232 (2010)

    Google Scholar 

  12. Dobzinski, S., Nisan, N., Schapira, M.: Truthful randomized mechanisms for combinatorial auctions. In: STOC, pp. 644–652 (2006)

    Google Scholar 

  13. Dynkin, E.B.: The optimum choice of the instant for stopping a markov process. Sov. Math Dokl. 4 (1963)

    Google Scholar 

  14. Feige, U.: On maximizing welfare when utility functions are subadditive. In: STOC, pp. 41–50 (2006)

    Google Scholar 

  15. Feige, U.: On maximizing welfare when utility functions are subadditive. SIAM J. Comput. 39(1), 122–142 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kleinberg, R.D.: A multiple-choice secretary algorithm with applications to online auctions. In: SODA, pp. 630–631 (2005)

    Google Scholar 

  17. Korula, N., Pál, M.: Algorithms for Secretary Problems on Graphs and Hypergraphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 508–520. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear programming. In: Proc. of FOCS, pp. 595–604 (2005)

    Google Scholar 

  19. Lehmann, B., Lehmann, D.J., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. In: ACM Conference on Electronic Commerce, pp. 18–28 (2001)

    Google Scholar 

  20. Nisan, N.: Introduction to mechanism design (for computer scientists). In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game Theory (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krysta, P., Vöcking, B. (2012). Online Mechanism Design (Randomized Rounding on the Fly). In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31585-5_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31585-5_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31584-8

  • Online ISBN: 978-3-642-31585-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics