Skip to main content

Applying the Techniques on Materials II

  • Chapter
  • First Online:
Conservation Science for the Cultural Heritage

Abstract

Back-scattered Scanning Electron Microscopy (BSEM) has been used to identify weathering mechanisms occurring in two oolitic limestones from urban areas in London and Cambridge, United Kingdom. From a petrographical point of view, the two stones can be described as oosparite and oomicrite, their main distinctive feature being the crystal size of the cement binding the limestone grains together. The sulphation mechanism, i.e. the replacement of calcium carbonate (calcite: CaCO3) by calcium sulphate dehydrate (gypsum: CaSO4 2H2O), at the surface and within the stone fabric is confirmed as the general decay process. Differences in macroporosity/permeability distribution in the two limestones lead to different weathering patterns. BSEM provides evidence that gypsum patinas still commonly found on limestone facades in polluted urban locations are advancing inside the diseased stone and that their removal is urgently needed to arrest the growth of the in-growing weathering front.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pye K, Schiavon N (1989) Cause of sulphate attack on concrete, render and stone indicated by sulphur isotope ratios. Nature 342(6250):663–664

    Article  CAS  Google Scholar 

  2. Schiavon N, Zhou L (1996) Magnetic, chemical and microscopical characterization of urban soiling on historical monuments. Environ Sci Technol 30(12):3624–3629. doi:10.1021/es9604774

    Article  CAS  Google Scholar 

  3. Zappia G, Sabbioni C, Riontino C, Gobbi G, Favoni O (1998) Exposure tests of building materials in urban atmosphere. Sci Total Environ 224:235–244

    Article  CAS  Google Scholar 

  4. Ausset P, DelMonte M, Lefevre RA (1999) Embryonic sulphated black crusts on carbonate rocks in atmospheric simulation chamber and in the field: role of carbonaceous fly-ash. Atmos Environ 30:1525–1534

    Article  Google Scholar 

  5. Schiavon N, Chiavari G, Fabbri D (2004) Soiling of limestone in an urban environment characterized by heavy vehicular exhaust emissions. Environ Geol 46:448–456. doi:10.1007/s00254-004-1046-8

    Article  CAS  Google Scholar 

  6. Schiavon N (2007) Kaolinisation of granite in an urban environment. Environ Geol 52(2):399–407. doi:10.1007/s00254-006-0473-0

    Article  CAS  Google Scholar 

  7. Bonazza A, Brimblecombe P, Grossi C, Sabbioni C (2007) Carbon in Black Crusts from the Tower of London. Environ Sci Technol 41:4199–4204

    Article  CAS  Google Scholar 

  8. EU 2008 Directive 2008/50/EC of the European Parliament and the Council of 23 May 2008 on Ambient Air Quality and Cleaner Air for Europe. European Commission, Brussels, Belgium

    Google Scholar 

  9. Viles H, Gorbushina AA (2003) Soiling and microbial colonization on urban roadside limestone: a three year study in Oxford, England. Build Environ 38:1217–1224

    Article  Google Scholar 

  10. Torok A (2008) Black crusts on travertine: factors controlling development and stability. Environ Geol 56:583–594

    Article  Google Scholar 

  11. DelMonte M, Sabbioni C, Vittori (1984) Urban stone sulphation and oil-fired carbonaceous particles. Sci Total Environ 36:369–376

    Article  CAS  Google Scholar 

  12. Schiavon N (1991) Gypsum crust growth and stratigraphy in building limestones: a SEM study of stone decay in the UK. In: Baer N, Sabbioni C, Sors AI (eds) Science, technology and the European cultural heritage. Butterworth-Heinemann Ltd, Oxford

    Google Scholar 

  13. Purcell D (1967) Cambridge stone. Faber & Faber Ltd, London

    Google Scholar 

  14. Pingitore NE (1976) Vadose and phreatic diagenesis processes, products and their recognition in corals. J Sediment Pet 46:985–1006

    CAS  Google Scholar 

  15. Tziafalias A (1994) Fifteen years of excavations in ancient Larissa. In Decourt J-C, Helly B, Gallis K (eds) La Thessalie. Quinze années de recherches archéologiques, 1975–1990. Bilans et perspectives. TAPA, Athens (in Greek)

    Google Scholar 

  16. Tziafalias A (2009) Ancient Theatre of Larisa? How a dream became reality. In: Proceedings of the 1st international conference on history and culture of Thessaly, Larisa, pp 207–223 (in Greek)

    Google Scholar 

  17. Caputo R, Helly B (2005) Archaeological evidences of past earthquakes: a contribution to the SHA of Thessaly, Central Greece. J Earthq Eng 9:199–222

    Google Scholar 

  18. Caputo R, Hinzen KG, Liberatore D, Schreiber S, Helly B, Tziafalias A (2011) Quantitative archaeoseismological investigation of the Great Theatre of Larissa, Greece. Bull Earthq Eng. doi:10.1007/s10518-010-9206-6

    Google Scholar 

  19. Coleman M, Walker S (1979) Stable isotope identification of Greek and Turkish marbles. Archaeometry 21:107–112

    Article  CAS  Google Scholar 

  20. Herz N (1992) Provenance determination of Neolithic to classical Mediterranean marbles by stable isotopes. Archaeometry 34:185–194

    Article  CAS  Google Scholar 

  21. Hermann JJ, Barbin V, Mentzos A, Reed R (2000) Architectural decoration and marble from Thasos: Macedonia, central Greece, Campania, and provenance. In: Lazzarini L (ed) Interdisciplinary studies on ancient stone. Bottega D’Erasmo Aldo Ausilio Editore, Padova

    Google Scholar 

  22. Capedri S, Venturelli G (2004) Accessory minerals as tracers in the provenancing of the archaeological marbles, used in combination with isotopic and petrographic data. Archaeometry 46:517–536

    Article  CAS  Google Scholar 

  23. Maniatis Y, Papadopoulos S, Dotsika E, Kavoussanaki D, Tzavidopoulos E (2009) Provenance investigation of neolithic marble vases from Limeraria, Thassos: imported marble to Thassos? In: Maniatis Y (ed) ASMOSIA VII, proceedings of the 7th international conference of the association for the study of marble and other stones in antiquity. BCH Suppl, Thassos

    Google Scholar 

  24. Maniatis Y, Tambakopoulos D, Dotsika E, Tiveriou-Stephanidou Th (2010) Marble provenance investigation of Roman sarcophagi from Thessaloniki. Archaeometry 52:45–58

    Article  CAS  Google Scholar 

  25. Al-Naddaf M, Al-Bashaireh K, Al-Waked F (2010) Characterization and provenance of marble Chancel Screens, northern Jordan. Mediterr Archaeol Archaeom 10:75–83

    Google Scholar 

  26. Germann K, Holzmann G, Winkler FJ (1980) Determination of marble provenance: limits of isotopic analyses. Archaeometry 22:99–106

    Article  CAS  Google Scholar 

  27. Capedri S, Giampiero V, Photiades A (2004) Accessory minerals and δ18O and δ13C marbles from Mediterranean area. J Cult Heritage 5:27–47

    Article  Google Scholar 

  28. Melfos V (2004) Mineralogical and stable isotopic study of ancient white marble quarries in Larissa, Thessaly, Greece. Bull Geol Soc Greece XXXVI/3:1164–1172

    Google Scholar 

  29. Melfos V, Voudouris P, Papadopoulou L, Sdrolia S, Helly B (2010) Mineralogical, petrographic and stable isotopic study of ancient white marble quarries in Thessaly, Greece—II. Chasanbali, Tempi, Atrax, Tisaion mountain. Bull Geol Soc Greece XLIII/2:845–855

    Google Scholar 

  30. Melfos V (2008) Green Thessalian Stone: the Byzantine quarries and the use of a unique architecture material from Larisa area, Greece. Petrographic and geochemical characterization. Oxf J Archaeol 27:387–405

    Article  Google Scholar 

  31. Craig H, Craig V (1972) Greek marbles: determination of provenance by isotopic analyses. Science 176:401–403

    Article  CAS  Google Scholar 

  32. Herz N (1987) Carbon and oxygen isotopic ratios: a data base for classical Greek and Roman marble. Archaeometry 29:35–43

    Article  CAS  Google Scholar 

  33. Salzer R, Lunkwitz R (1998) Diagnose von Bauschäden mittels IR- und Ramanspektroskopie. GDCh-Monographie, Band 11, GDCh Frankfurt

    Google Scholar 

  34. Salzer R, Lunkwitz R et al (1998) Baustoffanalyse mittels Infrarotspektroskopie. Internat Zeitschr Bauinstandsetzen 4:209–232

    Google Scholar 

  35. Genestar C, Pons C (2003) Ancient covering plaster mortars from several convents and Islamic and Gothic palaces in Palma de Mallorca (Spain). Analytical characterisation. J Cult Heritage 4:291–298

    Article  Google Scholar 

  36. Biscontin G, Birelli MP, Zendri E (2002) Characterization of binders employed in the manufacture of Venetian historical mortars. J Cult Heritage 3:31–37

    Article  Google Scholar 

  37. Moropoulou A, Bakolas A, Bisbikou K (1995) Characterization of ancient, byzantine and later historic mortars by thermal and X-ray diffraction techniques. Thermochim Acta 269(270):779–795

    Article  Google Scholar 

  38. Bakolas A, Biscontin G, Contardi V, Franceschi E, Moropoulou A, Palazzi D, Zendri E (1995) Thermoanalytical research on traditional mortars in Venice. Thermochim Acta 269(270):817–828

    Article  Google Scholar 

  39. Bakolas A, Biscontin G, Moropoulou A, Zendri E (1998) Characterization of structural byzantine mortars by thermogravimetric analysis. Thermochim Acta 321:151–160

    Article  CAS  Google Scholar 

  40. Vecchio S, La Ginestra A, Frezza A, Ferragina C (1993) The use of thermoanalytical techniques in the characterization of ancient mortars. Thermochim Acta 227:215–223

    Article  CAS  Google Scholar 

  41. Xidas PI, Triantafyllidis KS (2010) Effect of the type of alkylammonium ion clay modifier on the structure and thermal/mechanical properties of glassy and rubbery epoxy-clay nanocomposites. Eur Polym J 46:404–417

    Google Scholar 

  42. Yeha J-M, Huanga H-Y, Chena C-L, Sua W-F, Yub Y-H (2006) Siloxane-modified epoxy resin–clay nanocomposite coatings with advanced anticorrosive properties prepared by a solution dispersion approach. Surf Coat Technol 200:2753–2763

    Article  Google Scholar 

  43. Hang TTX, Truc TA, Nam TH, Oanh VK, Jorcin J-B, Pébère N (2007) Corrosion protection of carbon steel by an epoxy resin containing organically modified clay. Surf Coat Technol 201:7408–7415

    Article  CAS  Google Scholar 

  44. Allie L, Thorn J, Aglan H (2008) Evaluation of nanosilicate filled poly (vinyl chloride-co-vinyl acetate) and epoxy coatings. Corros Sci 50:2189–2196

    Article  CAS  Google Scholar 

  45. Truc TA, Hang TTX, Oanh VK, Dantras E, Lacabanne C, Oquab D, Pébère N (2008) Incorporation of an indole-3 butyric acid modified clay in epoxy resin for corrosion protection of carbon steel. Surf Coat Technol 202:4945–4951

    Article  CAS  Google Scholar 

  46. Dai C-F, Li P-R, Yeh J-M (2008) Comparative studies for the effect of intercalating agent on the physical properties of epoxy resin-clay based nanocomposite materials. Eur Polymer J 44:2439–2447

    Article  CAS  Google Scholar 

  47. Hosseinia MG, Raghibi-Boroujenia M, Ahadzadeha I, Najjarb R, Seyed Dorrajic MS (2009) Effect of polypyrrole–montmorillonite nanocomposites powder addition on corrosion performance of epoxy coatings on Al 5000. Prog Org Coat 66:321–327

    Article  Google Scholar 

  48. Orazem M, Tribollet B (2008) Electrochemical impedance spectroscopy, the electrochemical society series. Wiley, New York. ISBN 978-0-470-04140-6

    Google Scholar 

  49. Winston Revie R (2000) Uhlig’s corrosion handbook, 2nd edn, Wiley, New York, pp 949–1238. ISBN 0-471-15777-5

    Google Scholar 

  50. Baboian R (2005) Corrosion tests and standards: application and interpretation, 2nd edn. Wiley, New York, pp 107–130. ISBN 0-8031-2098-2

    Google Scholar 

  51. ASTM G 106. Standard practice for verification of algorithm and equipment for electrochemical impedance measurements

    Google Scholar 

  52. ASTM G 457. Standard test method for measurement of impedance of anodic coatings on aluminum

    Google Scholar 

  53. Cesareo R, Ridolfi S, Marabelli M, Castellano A, Buccolieri G, Donativi M, Gigante GE, Brunetti A, Rosales Medina MA (2008) Portable Systems for Energy-Dispersive X-Ray Fluorescence Analysis of Works of Art. In: Potts PJ, West M (eds) Portable X-ray fluorescence spectrometry: capabilities for in situ analysis. The royal society of chemistry, pp 206–243. ISBN-13: 9780854045525

    Google Scholar 

  54. Guida G, Artioli D, Ridolfi S, Gigante GE (2010) Study by mobile non destructive testing of the bronze statue of the “Satiro” of Marsala., science for cultural heritage; technological innovation and case studies in marine and land archaeology in the adriatic region and inland. World Scientific Publishing Co, Singapore, pp 23–30. ISBN-13 978-981-4307-06-2

    Google Scholar 

  55. Gigante GE et al (2008) Restoration of the funeral monument of Pope Sixtus IV by Antonio Pollaiolo (1493) in the Vatican Basilica: non invasive and microdestructive analysis—an operation protocol. ART2008—9th international conference, 2008. Jerusalem, Israel

    Google Scholar 

  56. Gabrielli N et al (2005) “Il restauro della sfera bronzea sulla cupola della Basilica di San Pietro”, Materiali e Strutture, nuova serie anno III numeri 5–6, 38–87, editore Nuova Argos

    Google Scholar 

  57. Wikipedia (17 April 2010). https://upload.wikimedia.org/wikipedia/commons/8/8a/Electromagnetic-Spectrum.png

  58. Demtröder, Experimentalphysik 2, Chapter 7 Elektromagnetische Wellen im Vakuum, Springer

    Google Scholar 

  59. Wikipedia (8 May2007). https://upload.wikimedia.org/wikipedia/commons/f/f5/Photoelectric_effect.svg

  60. Wikipedia. https://upload.wikipedia.org/wikipedia/commons/b/bc/Doubleslitexperiment.svg

  61. Wikipedia (6 Jan 2006). https://upload.wikimedia.org/wikipedia/commons/7/7e/Doubleslit_experiment_results_Tanamura_2.jpg

  62. Spektrum der Wissenschaft

    Google Scholar 

  63. Wikipedia (4 Aug 2006). https://upload.wikimedia.org/wikipedia/commons/a/a2/Wiens_law.svg

  64. Springer Handbook of Lasers and Optics, Chapter 11, Lasers and Coherent Light Sources

    Google Scholar 

  65. Gerthsen, Meschede: Physik, Chapter 15 Laserphysik, Springer, 2006

    Google Scholar 

  66. Widl G (2010) Am Anfang war das Licht. Ein kleines Laser Kompendium, Trumpf. ISBN 978-3-9813676-0-7

    Google Scholar 

  67. Limpert J: High power fiber lasers and amplifiers. http://www.optecbb.de/summerschool2006/lectures/15%20-%20Wed%2011.30%20-%20Jens%20Limpert.pdf, http://www.swisslaser.net/libraries.files/Vortrag_Limpert1.pdf

  68. Diehl R (ed) (2000) High-power diode lasers. Topics Appl Phys 78:369–408

    Google Scholar 

  69. Trumpf TruDisk Scheibenlaser (2011). http://www.trumpf-laser.com/typo3temp/pics/edca33c6a6.jpg

  70. Schubert F. http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/chap07/F07-02%20Homo%20&%20heterojunction.jpg

  71. Reithmaier JP (2004) Halbleiterlaser: Grundlagen und aktuelle Forschung, Uni Würzburg, SS 2004 formerly. http://www.physik.uni-wuerzburg.de/index.php?id=5297

  72. Diehl R (ed) (2000) High-power diode lasers. Topics Appl Phys 78:289–301

    Google Scholar 

  73. Jenoptik. http://bilddatenbank.jenoptik.com/index.php/6222a68dd1764af9cf8e07bc5

  74. Bäuerle D (1996) Laser processing and chemistry. Springer, Berlin

    Google Scholar 

  75. Ion JC (2005) Laser processing of engineering materials. Elsevier Butterworth-Heinemann, Oxford

    Google Scholar 

  76. Knowles MRH, Rutterford G, Karnakis D, Fergusin A (2005) Laser Micromachining of metals, Ceramics, Silicon and Polymers using Nanosecond Laserss, Oxford Lasers Ltd, Unit 8, Moorbrook Park, Didcot, OX11 7HP

    Google Scholar 

  77. Ready JF (editor in chief) (2001) LIA handbook of laser materials processing. Laser Institute of America, Magnolia Publishing, Inc, Magnolia

    Google Scholar 

  78. Rubahn HG (1999) Laser applications in surface science and technology. Wiley, New York

    Google Scholar 

  79. Steen WM (1998) Laser material processing, 3rd edn. Springer, Berlin

    Google Scholar 

  80. Jastrzebski ZD (1987) The nature and properties of engineering materials, 3rd edn. Wiley, New York

    Google Scholar 

  81. http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/molec.html

  82. http://www.layertec.de/en/capabilities/coatings/metallic

  83. Bromblet P, Laboure M, Orial G (2003) Diversity of the cleaning procedures including laser for there storation of carved portals in France over the last 10 years. J Cult Heritage 4:17s–26s

    Article  Google Scholar 

  84. Lahoz R (2006) PhD Thesis, University of Zaragoza

    Google Scholar 

  85. Pini R et al (2000) J Cult Heritage 1:S129–S137

    Article  Google Scholar 

  86. Teule R et al (2003) Controlled UV laser cleaning of painted artworks: a systematic effect study on egg tempera paint samples“. J Cult Heritage 4:209s–215s

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nick Schiavon , Nick Schiavon , Vasilios Melfos , Reiner Salzer , K. Chrysafis , P. Spathis or Giovanni Ettore Gigante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schiavon, N. et al. (2012). Applying the Techniques on Materials II. In: Varella, E. (eds) Conservation Science for the Cultural Heritage. Lecture Notes in Chemistry, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30985-4_6

Download citation

Publish with us

Policies and ethics